

Building Blocks

Advantages:

- Lower number of free parameters :
$(3 \times 5=15$ against $3+3=6)$ for a tetrahedron
- Direct crystal-chemistry interpretation allowing a priori definition of blocks

Benefits:

- Meaningless structural configurations cannot occur
- Range of convergence of the correct model is larger
- Hydrogen atoms can be included
- Active use of the chemical information and intuition

Problems:

- Description of blocks
- Connectivity between the blocks

- Structural solution is biased

Refinement:

- Common tool in single crystal diffraction C. Scheringer, Acta Cryst. 16 (1963) 546-550
- Distance and orientation constraints and restraints D. Watkin, Acta Cryst. A50 (1994) 411-437
- TLS thermal vibration model (Translational and Librational harmonic motion + Screw tensor)
- Becoming un-avoidable in powder diffraction R. Dinnebier, Powder Diffraction 14 (1999) 84-92
- Distance least-squares refinement Ch. Baerlocher, XRS-82. The X-ray Rietveld system, 1982, ETHZ Zürich
- Ab-initio least-squares refinement
R. Bianchi et al., Acta Cryst. A37 (1981) 65-71 ... RISCON
N. Masciocchi et al., J. Appl. Cryst. 27 (1994) 426-429 ... P-RISCON
- Modeling against small-angle scattering data D.I. Svergun, Acta Cryst. A50 (1994) 391-402

(Semi -) Rigid Bodies

Analysis of Patterson maps:

- Locating vector sets of known fragments.
C.E. Nordman, K. Nakatsu, J. Am. Chem. Soc. 85
(1963) 353-354 ... DIRDIF (ORIENT)
- Convolution molecule method.
W. Hoppe, Z. Elektrochem. 61 (1957) 1076-1083
R. Huber, Acta Cryst. 19 (1965) 353-356
- Rotational and translation search ... PATSEE.
E. Egert, Acta Cryst. A39 (1983) 936-940

Analysis of E-maps:

- Interpretation of E-maps by locating known fragments F. Pavelčík et al., Acta Cryst. D58 (2002) 275-283
- Search for fragments of known framework topology, zeolites ... FOCUS.
R.W. Grosse-Kunstleve et al., J. Appl. Cryst. 30 (1997) 985-995
- Structure envelopes
S. Brenner et al., J. Appl. Cryst. 30 (1997) 1167-1172

(Semi -) Rigid Bodies

Powder patterns decomposition: A. Altomare et al., J. Appl. Cryst. 32 (1999) 339-340 ... EXPO

$$
<\left|F_{\mathbf{h}}\right| \quad| | F_{p \mathbf{h}}\left|>=\left|F_{p \mathbf{h}}\right|^{2}+\sum_{\mathrm{j}} f_{\mathrm{j}}^{2}(\mathbf{h})\right.
$$

Global optimization of the model in direct space:

- Locating known blocks when minimizing cost function (diffraction and/or other observations). Rapidly developing in powder diffraction for last 15 years.

Easy for molecular structures:

- Connectivity is known (plane molecular formula)
- Description in terms of internal coordinates (bond distances, bond angles and torsion angles)

Difficult for non-molecular structures:

- Coordination of atoms is a-priori unknown
- Connectivity of blocks is a-priori un-known
- Description in terms of int. coo. still possible

Using information on connectivity:

- T-T distances and angles in zeolites M.W. Deam, J.M. Newsam, Nature 342 (1989) 260-262 ...ZEFSA
- Potential energy
H. Putz et al., J. Appl.

Cryst. 32 (1999) 864-870
... ENDEAVOUR

Building Blocks : Description

Flexible approach $=$ isolated atoms + restraints (presented by VFN in Durban)

Idea: keep all the coordination information, but without its pitfalls

- this modelization is independent from the order of the atoms
- any type of restraint can be introduced
- any type of movement can be directly done (no need to compute complex

All atom positions are directly defined by their xyz coordinates and
the coordination information is introduced by restraints on:

- bond lengths $\quad \chi^{2}=\frac{\left(d-d_{0}\right)^{2}}{\sigma_{d}^{2}}$
- bond angles

$$
\chi^{2}=\frac{\left(\alpha-\alpha_{0}\right)^{2}}{\sigma_{\alpha}^{2}}
$$

-dihedral angles $\quad \chi^{2}=\frac{\left(\delta-\delta_{0}\right)^{2}}{\sigma_{\delta}^{2}}$ torsions)

Building Blocks : Description

Butilding Blocks : Rotations

Euler angles

$\left[\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -\sin \phi \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]$.

Gimble lock :

Coincidence of inner most and outmost gimbles' rotation axes; loss of degree of freedom.
Rotations around one axis :
Ambiguity of rotations $(\pi,-\pi)$.

- One-to-one mapping between quaternions and rotations.
- Homogeneous distribution of quaternions on the 4 D sphere.

Connectivity of blocks and Special Positions: Dynamical Occupancy Correction

Occupancy $^{-1}=1+\Sigma_{\text {neighbours closer then } d_{\text {min }}}\left(\mathrm{d}_{\text {min }}-\mathrm{d}_{\mathrm{i}}\right) / \mathrm{d}_{\text {min }}$ Dynamical occupancy

- Smooth correction
- Merging of identical atoms

Merging excess atoms : $\mathrm{Zr}_{3} \mathrm{NiO}_{x} D_{y}$

Merging excess hydrogen (deuterium) atoms by Dynamical Occupancy Correction:

- The amount of absorbed hydrogen is not exactly known.
- The hydrogen atoms are distributed on interstitial sites, which can be predicted, but
- Not all sites are occupied ($2 \AA$ exclusion rule) and
- The sites are often partly occupied
- Introduce more isolated hydrogen atoms

Merging excess polyhedra : $\mathrm{NaFe}_{2}\left(\mathrm{Mg}_{\mathrm{x}}, \mathrm{Mn}_{1-\mathrm{x}}\right)\left[\mathrm{AsO}_{4}\right]_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
 Structure without knowing exact composition

Single crystal data, composition known only qualitatively.
$a=12.181(1), b=12.807(1), c=6.6391(5) \AA, \beta=112.441(9)^{\circ}, C 2 / c$
Modeling: 3 tetrahedra $\mathrm{AsO}_{4}, 2$ octahedra $\mathrm{FeO}_{6}, 1$ chedron MnO_{6},
$(\mathrm{Mg}, \mathrm{Mn}) \mathrm{O}_{6}, 1$ atom $\mathrm{Na}, 1 \mathrm{H}_{2} \mathrm{O}$
Correct : 2 tetrahedra $\mathrm{AsO}_{4}, 1$ octahedra $\mathrm{FeO}_{6}, 1$
Excess polyhedra merged by DOC. No solution by Direct Methods when composition wrong!

Isolated atoms : $\mathrm{LaMg}_{2} \mathrm{NiD}_{7}$

$$
\boldsymbol{a}=13.9785 \boldsymbol{b}=4.7025 \boldsymbol{c}=16.0244 \boldsymbol{\beta}=125.238
$$ $P 2_{1} / c$, metal atoms pseudosymmetry Cmcm 8 metal and 14 deuterium atoms

行 $\mathrm{P} 21 / \mathrm{c}$
Neutron pattern (ILL-D2B), $\lambda=1.594 \AA$

Molecule : Cimetidine

$\boldsymbol{a}=10.3941 \boldsymbol{b}=18.8188 \quad \boldsymbol{c}=6.8249 \quad \boldsymbol{\beta}=106.44$
$P 2_{1} / a \quad 17$ non-hydrogen atoms
Modeling: $\mathrm{C}_{10} \mathrm{~N}_{6} \mathrm{~S}-\mathrm{Z}$-matrix

$$
6+8 \mathrm{DOF} \quad 3.8 \mathrm{M} \text { trials }
$$

${ }^{\text {vamem Synchrotron, Daresbury }}$
1
Nome Appl. Cryst. 24(1991)222

Modeling: $\mathrm{C}_{10} \mathrm{~N}_{6} \mathrm{~S}$ - isolated
atoms + bonding restraints $6+51 \mathrm{DOF}+40$ restraints
1.85 M trials

Polyhedra : MgIr

$\boldsymbol{a}=18.4648 \boldsymbol{b}=16.1701 \boldsymbol{c}=16.8175$, Cmca 13 Ir and 12 Mg atoms
Frank-Kasper intermetallic compound

SNBL, $0.50012 \AA, R_{w p}=0.094, \chi^{2}=3.02, R_{B r a g g}=0.05$

Modeling MgIr

Modeling:

Free atoms

13 Ir atoms introduced on general positions and quickly localized.
All Ir atoms fixed and 12 Mg atoms introduced and localized. Any additional atom merged.

Polyhedra

7 icosahedra (Ir, Mg) ${ }_{12}$ introduced on general position and localized.
Ligands identification difficult - needs more programming.
$13+12$ free atoms $=39+36$ free p. solution in $15+160 \mathrm{~min}$
7 icosahedra $=42$ free p . solution in 120 min

Mixed: $\mathrm{Al}_{2} \mathrm{~F}_{10}\left[\mathrm{C}_{6} \mathrm{~N}_{4} \mathrm{H}_{2} \mathrm{O}\right]$

Powder data, laboratory, $\mathrm{CuK}_{\alpha}, \boldsymbol{a}=10.3258(9), \boldsymbol{b}=7.3960(6), \boldsymbol{c}=13.243(1) \AA, \beta=139.901(2)^{\circ}, P c$
Modeling in P2/c: 2 octahedra $\mathrm{AlF}_{6}, 1$ molecule $\mathrm{C}_{6} \mathrm{~N}_{4} \mathrm{H}_{20}$
Both octahedra quickly and correctly localized, non-centrosymmetric molecule localized on the inversion centre. The structure transformed to the non-centrosymmetric space group and refined.

2 polyhedra +1 semi-rigid molecule $=12+6$ free params.

Mixed: $\mathrm{Al}_{2}\left(\mathrm{CH}_{3} \mathrm{PO}_{3}\right)_{3}$

Edgar et al. (2002) Chem. Commun. 8 (2002) 808-809

$$
\boldsymbol{a}=13.2979 \boldsymbol{b}=9.6570 \boldsymbol{c}=5.0725 \boldsymbol{\alpha}=89.601 \boldsymbol{\beta}=111.242 \boldsymbol{\gamma}=92.088, P \overline{1}, 26 \text { atoms }
$$

Errors in Building Blocks?

Maximum likelihood aproach (presented by VFN in Durban)

In a "classical approach" :

$$
\sigma^{2}=y_{o b s}
$$

$x^{2}=\sum \frac{\left(y_{o b s}^{i}-y_{c a l c}^{i}\right)^{2}}{\sigma_{i}^{2}}$

Assumes that the model can fit perfectly the observed data during the global optimization. But there are positional errors in the model, because the model is not yet correct!
And some building blocks can be missing!

$$
\begin{gathered}
\sigma_{i}^{2}=\sigma_{c a l c}^{2}+\sigma_{o b s}^{2} \\
x^{2}=\sum \frac{\left(y_{o b s}^{i}-\left\langle y_{c a l c}^{i}\right\rangle\right)^{2}}{\sigma_{i}^{2}}
\end{gathered}
$$

Hypersurface : $x^{2}=f($ parameters $)$

random positionnal errors:
increases the width of the global minimum (for small errors)
flattens the hypersurface for large errors

Solving structures per partes ?

Missing atoms (blur) do not contribute to calculated structure factor, but increase the σ^{2} calc.
A.J. Markvardsen, W.I.F. David and K. Shankland, Acta Cryst. A58 (2002) 316-326

Nitrate ion contains $\sim 18 \%$ of the total scattering power

