Structure Solution from Powder Diffraction Data SSPD'03 September 14-19, 2003

Congress Center Academia, Stara Lesna, Slovakia

High Resolution Powder Diffraction: An indispensable tool in modern solid state chemistry

Robert E. Dinnebier Max-Planck-Institute for Solid State Research Stuttgart, Germany

Why Powder Diffraction ?

single crystal $\leftarrow \rightarrow$ powder

Powder diffraction – reciprocal & real space

the problem of powder diffraction

Powder: Single crystal reciprocal lattice is smeared into spherical shells

→Projection of the 3-dim reciprocal space onto the one dimensional 20-axis reflections at equal d-spacings contribute to the same powder diffraction line

$$\vec{Q} \Rightarrow |Q|$$

 \rightarrow Different degrees of overlap:

- multiplicity (min. 2 max 48) (e.g. 100, -100, 010, 0-10, 001, 00-1 in the cubic case)
- systematical (e.g. 511, 333 in the cubic case)
- accidental (depending on lattice parameters and scattering angle)

⇒The intensities and FWHM's of individual reflections can often not be determined with sufficient accuracy

Parallel beam diffraction instrument at beamline X3B1 at the National Synchrotron Light Source (NSLS)

(No peak shift from sample displacement, transparency. No distortion from imperfect focus)

Alternative: high resolution, high energy diffractometer

Na₃BiO₄, X17B1, NSLS, $\lambda = 0.18528$ Å

Design of a multi purpose powder diffractometer

Bulk modulus and high pressure crystal structures of Pb₃O₄ (Minium)

Dinnebier, Carlson, Hanfland & Jansen, American Mineralogist 2003, in press

The lone pair of Pb²⁺

Ab initio calculations of the origin of the distortion of α -PbO (Pb^{+II}O)

Watson, Parker & Kresse, Phys. Rev. B59, 1999, 8481-8486 Pb₃O₄ (Pb^{+IV}Pb^{+II}₂O₄) at ambient conditions

Pb₃O₄ at low temperature

Lattice parameters and (rel.) volume of Minium in dependence of temperature (Garnier et al., 1976)

Equipment to measure Pb_3O_4 at high pressure

Selection of Diamond Anvil Cells

Mar345 image plate detector

Design of multi purpose optics hutch at ID9, ESRF, high pressure, time resolved (Laue)

Influence of pressure medium on the diffraction peak width of Pb₃O₄

Dependence of FWHM on pressure medium

Data reduction

Anisotropic peak broadening in Pb₃O₄

Rietveld plot of the low pressure phase I of Pb₃O₄ at P = 1.1 kbar (λ = 0.41594 Å)

Anisotropic Microstrain:

The anisotropic microstrain distribution is directly related to the elastic constants of the material.

The peak width ~ $\tan \theta$ but proportionality constant is different in different directions of (hkl).

 $S^{2} = S_{400}h^{4} + S_{301}h^{3}l + ... + S_{004}l^{4}$ $\delta d / d = \pi / 180Sd^{2}$ FWHM in $2\theta = (360 / \pi)(\delta d / d) \tan \theta$.

The phenomenological model of P. W. Stephens, J. Appl. Cryst. 32, 281-289, 1999 is used:

Microstrain in the tetragonal phase I of Pb₃O₄

Rietveld plot of phase I of Pb_3O_4 at P = 1.1 kbar (λ = 0.41594 Å)

Pb₃O₄ (Pb^{+IV}Pb^{+II}₂O₄) at ambient conditions

Isosurface of the anisotropic microstrain of phase I of Pb_3O_4 at 0.6 kbar

Microstrain in the orthorhombic phase II of Pb₃O₄

Rietveld plot of phase II of Pb_3O_4 at P = 15 kbar (λ = 0.41594 Å)

Isosurface of the anisotropic microstrain of phase II of Pb_3O_4 at 34 kbar

 $Pb_{3}O_{4}$ ($Pb^{+IV}Pb^{+II}_{2}O_{4}$) at 34 kbar

Pb₃O₄ at high pressure

Effect of pressure on the crystal structure of minium (pressure range: 0-420 kbar) Left: Lattice parameters, (rel.) volume and bulk moduli Right: Powder diffraction patterns

Pb₃O₄ between 0 and 410 kbar

Phase transitions of Pb₃O₄ at high pressure up to 41 Gpa

R. E. Dinnebier, S. Carlson & M. Jansen

2002

The high pressure phase III of Pb₃O₄ at 133 kbar

Rietveld plot of Pb₃O₄ at 133 kbar

Ball and stick model of the crystal structures of Pb_3O_4 at 133 kbar (phase III) in a projection along c-axis. The $Pb^{+4}O_6$ octahedra are shown.

Comparison to isotypic crystal structures

Metal-oxygen distances (Å)

Fig. 3. Volume of unit cell versus the average octahedral (dashed line) and trigonal prismatic (full line) bond distances in Mn_2GeO_4 and isomorphous compounds. Verticals drawn from 1.77 Å (average Si-O bond length) and 2.10 Å (average Mg-O length), ± 0.05 Å, should intersect the dashed and full lines at the same unit-cell volume if Mg_2SiO_4 is to form the Mn_2GeO_4 structure.

Phase III of Pb_3O_4 is Isotypic to the high pressure form of Mn_2GeO_4 , a member of the olivine group (Wadsley, Reid & Ringwood, 1968, Acta Cryst. B 24, 740-742)

Coordination polyhedra in the high pressure phase III of Pb₃O₄

Regular $Pb^{+4}O_6$ octahedron (left) in Pb_3O_4 at 13.3 GPa (phase III)

Irregular capped trigonal prisms. Left: $Pb^{+2}O_{6+1}$ in Pb_3O_4 at 13.3 GPa (phase III) Right: $Sr^{+2}O_{6+1}$ in Sr_3PbO_4 at ambient conditions

Hexagonal closed packing (hcp) arrangement of Pb_3O_4 at 13.3 GPa leading to the formula $(Pb^{+4}_3)^{VI}(Pb^{+2}_{2}_6)^{IV}O_4$.

ELF calculation for the high pressure phase III of Pb₃O₄ at 133 kbar

Isosurface of the electron localization function (ELF=0.385)

Crystal and Molecular Structures of Alkali Oxalates First Proof of a twisted Oxalate Molecule in the Solid State

Robert E. Dinnebier, Sascha Vensky, Martin Panthöfer & Martin Jansen 2002, J. Inorg. Chem., in press

The oxalate dianion $C_2 O_4^{2-}$

Global optimization methods in direct space:

The method of simulated annealing for structure determination from powder diffraction data

Selection of T and δ according to an annealing protocol

Setting an initial atom configuration {X}

Calculation of χ^2 (intensity or profile) e.g $\chi^2 = \sum_{h} \sum_{k} (I_h - c |F_h|^2) (V^{-1})_{hk} (I_k - c |F_k|^2)$

Random change in atom configuration ${X}_{new} = {X}+\delta{X}$ (translation, rotation, torsion, occupancy...)

> Calculation of new χ^2_{new} and $\Delta \chi^2 = \chi^2_{new} - \chi^2$

> > Δ**χ²>0**

no {X}={X}_{new}

{X} ={X}_{new} with probability $P = \exp\left(\frac{-\Delta \chi^2}{kT}\right)$

ves

,Simulated annealing schedule'

Chi² and temperature in dependence of the number of moves during simulated annealing run

Crystal and Molecular Structures of Alkali Oxalates

Powder pattern of $K_2C_2O_4$, β -Rb₂C₂O₄, α -Rb₂C₂O₄, and Cs₂C₂O₄ (X3B1, NSLS). The isosurface of anisotropic microstrain for $K_2C_2O_4$, β -Rb₂C₂O₄ is given

Crystal and Molecular Structures of Alkali Oxalates

Crystal and Molecular Structures of Alkali Oxalates

Thermal behavior of rubidium oxalate

Powder pattern of rubidium oxalate recorded at X7B (NSLS) in dependence on temperature (25→450→75°C)

New developments for 'in situ' powder difraction

Equipment at beamline X7B, NSLS

Micro reactors with/without heater

Mass-spectrometer

Thermal behavior of rubidium oxalate

Time between scans: 120 sec (exposure time 30 sec, readout + erase time 90 sec) <u>25</u>°-450°-25: 2°/60 sec; 200 scans (= 400 min)

The peroxodicarbonate dianion in $K_2C_2O_6$

Dinnebier, Vensky, Stephens, and Jansen, 2002, Angew. Chemie Int. Ed. 41(11), 1922-1924.

Tetraferrocenyl-[3]-Cumulene (Fc)₂ C-C-C(Fc)₂

Crystal structure of the small unit cell (disordered model) of Tetraferrocenyl-[3]-Cumulene.

Tetraferrocenyl-[3]-Cumulene (Fc)₂ C-C-C-C(Fc)₂

Tree like representation of all allowed combinations of layers up to the forth period for tetraferrocenyl-[3]cumulene starting from layer A.

Plausible stacking fault models for Tetraferrocenyl-[3]-Cumulene (ABCDA DABC), (ABA DAD)

Evidence for the facial isomer in the blue luminescent δ-phase of tris(8-hydroxyquinoline)aluminum(III) (Alq₃)

Michael Cölle, Robert E. Dinnebier and Wolfgang Brütting Chem. Comm, 2002, 23, 2908-2909

Properties of Alq₃

Isomers of δ -Alq₃

facial

meridonal

"meridonal-trans"

Different degrees of overlap of the π -orbitals of hydroxyquinoline ligands belonging to neighboring Alq₃ molecules are likely to be the origin of the significantly different electro-optical properties. Three isomers in the blue luminescent δ -phase of Alq₃ are possible

X-Ray Analysis of δ -Alq₃

Rietveld plots of δ -Alq₃ at ambient conditions The wavelength was $\lambda = 1.15$ Å. Left: "correct" structure with facial isomer (R_p= 5.0%, R_{wp}= 6.5%, R-F² =10.5%) Right: "false" structure with meridonal isomer (R_p= 7.3%, R_{wp}= 9.4%, R-F² =19.4%)

Crystal structure of δ -Alq₃ in a projection along the *c*-axis. (a), (b) and (c) are projections perpendicular to the planes of the hydroxy-quinolineligands 1, 2 and 3, respectively, showing the overlap between ligands of neighbouring Alq₃ molecules.

Acknowlegdement

Beamtime

High Resolution Powder Beamline X3B1 (NSLS) High Resolution Powder Beamline BM16 (ESRF) High Energy Beamline ID15 (ESRF), X17B (NSLS) High Pressure Beamlines ID9 + ID30 (ESRF) Chemsitry Beamline X7B (NSLS) High Resolution Powder Beamline B2 (HASYLAB) **Cooperation** Martin Jansen (MPI, Stuttgart) Peter W. Stephens (SUNY at Stony Brook & X3B1, NSLS) Sander van Smaalen, Martin Schneider, Markus Wunschel (U. of Bayreuth) Poul Norby (U. of Oslo) Falk Olbrich (U. of Magdeburg) Robert Von Dreele (Los Alamos Natl. Lab.) Matthias Wagner (U. of Frankfurt) Wayne Dollase (U. of Los Angeles) S. Kirik (U. of Krasnoyarsk) MPG, U. of Bayreuth, DFG, FCI, BMFT, INTAS, Clariant GmbH, BASF AG, Böhringer Ingelheim KG