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Abstract

Crystallite thickness distributions (CTDs) of fundamental illite particles have been determined for a set of pelitic
samples from Palaeozoic rocks. Observed CTD shapes are of two main types, asymptotic and lognormal, and these
shapes evolve systematically with increasing metamorphic grade. The shapes of the CTDs are explained by two
growth stages; (1) an early stage of simultaneous nucleation and growth, during which the asymptotic profiles of
CTDs were established, and (2) a later stage of surface-controlled growth without further nucleation, giving rise to
the lognormal shapes. The transition from the diagenesis zone to the anchizone, as determined from the Kübler
index, is marked by a change in CTD shape from asymptotic to lognormal.
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1. Introduction

Evolution of the illitic material (sensu ŚRODOŃ,
1984) has been widely used to assess the evolution
of pelitic material during diagenesis and low
grade metamorphism. In most studies, illite crys-
tallinity (= Kübler index, see GUGGENHEIM et al.,
2002) has been employed despite the limitations
of the method (KISCH, 1983; BLENKINSOP, 1988;
FREY, 1987; FREY and ROBINSON, 1999; KÜBLER

and GOY-EGGENBERGER, 2001 and references
therein). Alternative methods have been pro-
posed based mainly on the determination of crys-
tallite thickness by either TEM or XRD (EBERL
and VELDE, 1989; MERRIMAN et al., 1990; NIETO
and SÁNCHEZ-NAVAS, 1994; MERRIMAN et al., 1995
a, b; LANSON et al., 1995, 1996; ARKAI et al., 1996;
EBERL et al., 1996, 1998a, b; DRITS et al., 1998; JA-
BOYEDOFF et al., 2001).

The present study is an attempt to apply the
Bertaut-Warren-Aberbach (BWA) method (DRITS
et al., 1998), using the MudMaster computer pro-
gram (EBERL et al., 1996), to evaluate illite thick-
ness evolution in shales during the diagenesis to
low grade metamorphism transition. Crystal
thickness distributions (CTDs), thus obtained,
have distinctive shapes which can convey infor-

mation about crystal growth history (EBERL et al.,
1998b). These shapes can be used in combination
with the computer program GALOPER (EBERL et
al., 2000) to establish a model for crystal growth of
the minerals. Such information may help to unravel
the physical and chemical conditions in the rocks
that are associated with increasing temperature.

2. Materials and methods

A set of illite-containing pelitic samples from Pa-
laeozoic rocks of the Cantabrian Zone, the exter-
nal part of the Iberian Variscan belt (NW Spain),
ranging in metamorphic grade from diagenesis to
high anchizone, were selected for this study. The
ages of the rocks range from Cambrian to Car-
boniferous. Cambrian to Westphalian A-B rocks
belong to a pre-tectonic succession, deposited pri-
or to the Variscan deformation, whereas the West-
phalian C-D and Stephanian strata are syn-tec-
tonic and were deposited while the Variscan de-
formation was taking place. Results from previ-
ous studies (BRIME and PÉREZ-ESTAÚN, 1980;
BRIME, 1981, 1985; GARCÍA-LÓPEZ et al., 1997;
BASTIDA et al., 1999; BRIME et al., 2001b) showed
that maximum temperatures were attained dur-
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ing sedimentary burial previous to folding. Tem-
peratures, assessed using conodont colour altera-
tion index and its correlation with temperature as
established by EPSTEIN et al. (1977) and REJEBIAN

et al. (1987), varied in different parts of the area,
but never exceeded 350 °C (GARCÍA-LÓPEZ et al.,
1997, BASTIDA et al., 1999; BRIME et al., 2001b).

Samples were lightly crushed and disaggre-
gated in distilled water with an ultrasonic probe.
Then they were saturated with Na, and the <2 µm
size fraction separated by centrifugation. Polyvi-
nylpyrrolidone-(PVP-) intercalated samples were
prepared according to EBERL et al. (1998a) and X-
rayed on single crystal Si-wafers.

Samples were analyzed in Boulder, Colorado,
using a Siemens D500 XRD system with a dif-
fracted beam graphite monochromator, CuK� ra-
diation and a scintillation counter. Samples were
scanned from 4 to 10 °2� using a tube current and
voltage of 30 mA and 40 kV, respectively. The step
size was 0.02 °2� with a count time normally of 5 s
per step, but up to 20 s per step was also used for
some samples.

The resulting 001 XRD peaks for illite were
measured for mean thickness and thickness distri-
bution by the BWA method (DRITS et al., 1998)
using the computer program MudMaster (EBERL

et al., 1996). Although the options are included in
the program, removal of the K�2 radiation and
correction for instrumental broadening were not
performed, because such corrections are unneces-
sary in our experimental setup if the crystallite
thickness is less than about 25 to 30 nm, and if the
2� for the peak is less than about 50° (EBERL et al.
1996). Relations between crystal growth mecha-
nism and the shapes of CTDs is based on the
methods described by EBERL et al. (1998b) and
ŚRODOŃ et al. (2000).

Shapes of crystal thickness distributions were
simulated using the computer program GALOP-
ER (EBERL et al., 2000). Comparison between
simulated and measured crystallite distributions
were made with the Kolmogorov-Smirnov statis-
tical test. A significance level >1% was considered
to be a match.

Sample Sample IC Kübler �MM �2
MM mean size CTD shape N + SCG SCG �G1 �2

G1 KS test
age reference º2� nm no cycles no cycles %

Ordovician B73 0.24 2.53 0.43 15.6 LN 4 4 2.62 0.46 1 to 5
Cambrian B612 0.29 2.71 0.34 17.8 LN 3 4 2.79 0.39 1 to 5
Silurian B12 0.36 2.01 0.41 9.3 LN 4 2 2.04 0.32 >10
Ordovician I309 0.40 2.11 0.43 10.2 LN 5 2 2.22 0.43 >10
Cambrian S20 0.42 2.21 0.36 11.0 LN 4 3 2.25 0.27 1 to 5
Ordovician I222 0.45 1.95 0.41 8.7 LN 5 1 2.04 0.33 1 to 5
Silurian I310 0.42 2.33 0.33 12.1 LN 4 3 2.41 0.37 1 to 5

Ordovician S1 0.43 1.29 0.41 4.7 Asymp 5 0 1.46 0.39 1 to 5
Lower Devonian S12 0.47 1.20 0.34 4.1 Asymp 4 0 1.28 0.24 >10
Carboniferous I248 0.52 1.34 0.43 4.9 Asymp 5 0 1.46 0.39 >10
Lower Devonian I306 0.57 1.46 0.47 5.6 Asymp 5 0 1.45 0.38 >10
Ordovician I234 0.61 1.41 0.40 5.1 Asymp 5 0 1.45 0.38 >10
Upper Silurian B70 0.62 1.47 0.45 5.6 Asymp 5 0 1.46 0.39 >10
Carboniferous I214 0.65 1.25 0.38 4.4 Asymp 4 0 1.28 0.24 1 to 5
Carboniferous I282 0.66 1.31 0.38 4.7 Asymp 5 0 1.46 0.39 1 to 5
Lower Devonian I308 0.72 1.28 0.36 4.4 Asymp 4 0 1.28 0.24 1 to 5
Lower Devonian I307 0.74 1.23 0.36 4.3 Asymp 5 0 1.46 0.39 >10
Lower Devonian B24 0.75 1.17 0.31 3.9 Asymp 5 0 1.46 0.39 >10
Upper Devonian I256 0.76 1.18 0.31 3.9 Asymp 4 0 1.28 0.24 1 to 5
Carboniferous I299 0.84 1.19 0.33 4.0 Asymp 4 0 1.28 0.24 1 to 5

Carboniferous* H5 0.26 1.86 0.70 9.4 Asymp 7 0 1.84 0.70 1 to 5
Carboniferous* H12 0.33 1.53 0.53 6.4 Asymp 5 0 1.48 0.40 1 to 5
Carboniferous* H7 0.35 1.51 0.61 6.5 Asymp 5 0 1.47 0.38 1 to 5
Carboniferous* H4 0.41 1.50 0.50 6.1 Asymp 5 0 1.46 0.39 1 to 5
Carboniferous* H24 0.54 1.44 0.48 5.6 Asymp 5 0 1.46 0.39 1 to 5

Table 1 Parameters of PVP dispersed illite samples.
�MM and �2

MM—lognormal parameters for the distribution of fundamental particle thicknesses measured by the
Bertaut-Warren-Aberbach method using MudMaster; �G1 and �2

G1—lognormal parameters for the distribution of
fundamental particle thicknesses obtained during crystal thickness distribution simulations using GALOPER;
N + SCG—calculation cycles of early stage of nucleation and surface-controlled growth; SCG—calculation cycles of
late stage of surface controlled growth without nucleation; KS test %—level of significance of the Kolmogorov-
Smirnov statistical test in comparing GALOPER simulated with MudMaster measured illite thickness distributions.
(*)—samples from the syn-tectonic sequence.
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Fig. 1 Illite crystallite thicknes distributions. (a–c) Asymptotic shape; (d–e) Lognormal-like shape. The solid lines
are lognormal fits to the data.
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X-ray diffraction analyses of the <2 µm frac-
tion for determination of the Kübler index were
done in Oviedo, Spain using a Philips 1710 diffrac-
tometer equipped with graphite monochromator

and using CuK� radiation. Preparation of sam-
ples and Kübler index determinations followed
the recommendations of the IGCP294 working
group (KISCH, 1991). The values of Kübler index
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obtained have been converted to Kübler scale,
with anchizone limits between 0.42° and 0.25 °2�,
using a set of nine samples provided by H.J. Kisch.

3. Results

Results of the XRD thickness measurements for
PVP intercalated illite samples, together with Kü-
bler index, are indicated in Table 1. Mean thick-
ness measurements range between 3.9 and 17.8
nm (Table 1). Thickness roughly correlates in-
versely to the Kübler indices (r2 = 0.5).

Measurement of the 001 peak of illite yielded
two main types of crystal size distributions,
asymptotic and lognormal (Fig. 1). Asymptotic
shapes (Figs. 1 a–c) correlate with diagenetic
rocks, as indicated by measurement of Kübler in-
dices greater than 0.42 °2�, whereas lognormal
distributions (Figs. 1 d–e) correlate with anchi-
zonal values (with Kübler indices less than 0.42
°2�, Table 1).

Lognormal distributions are characterized by
a spike at very small sizes, the nature of which was
uncertain, but which could be an artifact of the
MudMaster calculation. To check this possibility,
theoretical XRD patterns were calculated with
the NEWMOD computer program (REYNOLDS,
1985) using lognormal and asymptotic CTDs in

the calculations. CTDs then were determined
from the calculated patterns using MudMaster.
The crystallite thickness distributions used in
NEWMOD calculated XRD patterns did not
contain spikes. Upon analysis, the spike is not
present in MudMaster analysed NEWMOD pat-
terns that used asymptotic CTDs, but is present in
those calculated using lognormal CTDs. There-
fore, the spike in the measured lognormal CTDs
is considered to be an artifact. The spike probably
results from the manner in which the hook correc-
tion is performed in the MudMaster program
(EBERL et al., 1996), because this correction is bet-
ter optimized in the program for the asymptotic
CTD shape. Consequently the spikes shown in
Fig. 1 were removed from lognormal CTDs meas-
ured for the samples, using a smoothing power of
1 in the MudMaster program, prior to further
analysis.

Crystallite thickness distributions can be
characterized using parameters � and �2 that de-
scribe the mean and variance of the natural loga-
rithms of the crystal thickness (EBERL et al.,
1998b), respectively (Table 1, Fig. 2). The growth
pathways for the samples can be simulated with
the aid of an alpha-beta squared diagram and the
computer program GALOPER (EBERL et al.,
2000). On this diagram, line 1–7 indicates the path
for continuous nucleation and growth in open sys-

Fig. 2 � vs �2 diagram determined on the samples using the MudMaster program. 1–7, path for simultaneous, con-
stant-rate nucleation and growth; a–g, paths for surface-controlled growth without simultaneous nucleation.
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tems, and lines a–g indicate paths for surface-con-
trolled growth in open systems (EBERL et al.,
1998b). Numbers 1 to 7 correspond to the number
of cycles used by the GALOPER program to
reach that position in the alpha-beta squared dia-
gram. Lines a–g correspond to the various paths
followed by the surface controlled growth of par-
ticles of different initial size (smaller in a, and big-
ger in g). The distribution of the studied samples
(Fig. 2) shows that most asymptotic samples are
distributed in an area roughly parallel to line 1–7,
whereas samples with lognormal CTDs are locat-
ed in the field to the right of it, between lines c–e.
Both results are predicted by crystal growth theo-
ry (EBERL et al., 1998b; ŚRODOŃ et al., 2000).

Samples with asymptotic distributions have
been modelled with a growth mechanism of con-
stant rate nucleation and growth (path 1–7 of Fig.
2). According to EBERL et al. (1998b), this crystal
growth mechanism is characterized by crystals
nucleating with the same crystal thickness (2 nm
in this case) and then growing according to the
Law of Proportionate Effect as more crystals nu-
cleate at a constant rate. In this model, �2 increas-
es exponentially with �. If this nucleation and
growth event is followed by a surface-controlled
growth without nucleation, the asymptotic distri-
bution is transformed into a lognormal one (Fig.
1). The path followed by particles growing accord-
ing to this model would be 1-4-d (Fig. 2).

4. Discussion

GALOPER simulations indicate that illites with
asymptotic CTDs evolved by a mechanism of con-
stant-rate nucleation and growth. These crystals
must have formed in highly supersaturated solu-
tions that could sustain nucleation (EBERL et al.,
1998b). This behaviour is shown by the Devonian
and younger rocks. Similar asymptotic shapes are
obtained for samples with a big proportion of de-
trital material (DUDEK, 2001; ŚRODOŃ et al., in
press), but the fact that the samples closely paral-
lel and approach the theoretical curve in the �–�2

space for nucleation and growth, lead us to favour
this mechanism. However, the presence of various
amounts of detrital components could cause the
samples to have a larger �2 than is predicted from
crystal growth theory, and therefore cause them
to plot to the left of theoretical curve 1–7 in Fig. 2.

In contrast, GALOPER simulations indicate
that illites with lognormal-like CTSs grew initially
by a mechanism of nucleation and growth fol-
lowed by surface-controlled growth without nu-
cleation as the level of supersaturation decreased.
Nucleation is favoured by elevated supersatura-

tion (e.g. LASAGA, 1998), and therefore a decrease
in supersaturation, as nuclei appear and grow,
would hamper nucleation. This mechanism is con-
sistent with these samples showing the smaller
Kübler index values. All of the lognormal CTDs
are pre-Devonian.

The behaviour of the syntectonic Carbonifer-
ous samples (triangles on Fig. 2) is noteworthy. Al-
though they have a low value of the Kübler index,
indicating high anchizone for most of them, their
CTDs are asymptotic, and organic indicators such
as coal rank or pallinomorph alteration, indicate
that diagenetic conditions prevailed in the area
(CASTRO et al., 2000a, b). The disagreement be-
tween Kübler index and both stratigraphic posi-
tion of the samples (thermal increase is mostly
due to burial) and organic indicators, has been in-
terpreted as the signature of detrital micas inher-
ited from the rapidly uplifting Variscan chain.
These micas probably avoided any significant
chemical weathering throughout their short
transport history (BRIME et al., 2001a). Incorpora-
tion of detrital phyllosilicates into the <2 µm frac-
tion of sediments is a well known feature of low-
grade shales (KÜBLER et al., 1991; WARR et al.,
1996; NIETO et al., 1996; LANSON et al., 1998;
GHARRABI et al., 1998), and would tend to narrow
the XRD peak at half width. Therefore, it seems
that CTD shape may better reflect crystallite evo-
lution than the measurement of the Kübler index,
particularly if some detrital components are
present in the samples. Whereas the Kübler index
may indicate anchizonal and even epizonal condi-
tions, CTDs would not show the lognormal shapes
characteristic of the onset of metamorphism.

5. Conclusions

The illites studied are characterized by distinct
CTDs that seem to evolve in thickness systemati-
cally with increasing grade. The shapes of the
CTDs are best explained by two growth stages,

1) an early stage of nucleation and growth,
during which the asymptotic profile of CTDs was
established; and, for crystals larger than a certain
critical size,

2) a later stage of surface-controlled growth
without further nucleation.

According to the results presented here, the
critical thickness for the change from growth
stage (1) to stage (2) is close to 5 nm (Fig. 2), a
thickness which marks the change in CTD shape
from asymptotic to lognormal, and which lies at
the diagenesis-anchizone boundary. Therefore, at
least in the rocks studied here, this boundary
marks an important qualitative change in the
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mode of crystal growth. Location of this boundary
by CTD shape rather than by mean crystallite
thickness (determined either by XRD or TEM)
may be less subject to measurement errors.
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