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INTRODUCTION

An understanding of the mechanisms of crystal growth and
resultant crystal size distributions (CSDs) is important because
geological information can be deduced from the shapes of CSDs
if the relations between these shapes and the underlying geo-
logical processes are understood. Although a considerable
amount of research has focused on studying crystal growth
based on CSDs, results have been inconsistent, leading to con-
tradictory interpretations of crystal growth mechanisms. At-
tempts to model crystal growth mathematically have fared little
better, as they often fail to predict either the commonly ob-
served lognormal size distribution or the associated crystal size
variance (Eberl et al. 2002a).

One controversy surrounding earlier studies involves inter-
pretation of crystal growth in terms of size-independent (con-
stant) vs. size-dependent (proportionate) growth (Eberl et al.
2002a). This paper will explore the origins of these two growth
mechanisms, how these types of growth affect the CSD shape,
and how they can be affected by environmental conditions.
These growth mechanisms, investigated with experiments us-
ing potassium alum and calcite crystals grown in both unstirred
and stirred aqueous solutions, are presumed to have occurred
under conditions of supply-controlled growth, when the rate-
controlling step is the supply of reactants to the crystal sur-
face, either by diffusion or by advection. This type of growth

contrasts with surface-controlled growth, where the supply of
reactants exceeds the growth rate.

Three CSD shapes commonly are formed early in the crys-
tallization process: lognormal, asymptotic, and a “universal
steady-state” shape consistent with a process of Ostwald rip-
ening (Eberl et al. 1998; Kile et al. 2000). The initial CSD shape
then may be modified during subsequent supply-controlled
growth that can be described by constant growth, by propor-
tionate growth, or by some combination of the two; usually, it
is during this phase of growth when most of the crystal mass is
added. Several other growth laws are possible (see below), but
have not been detected in our experiments.

GROWTH EQUATIONS

Constant growth was described by McCabe in 1929, who
postulated a “DL law”, whereby crystallographically equiva-
lent faces on similar crystals would grow at the same rate. This
growth law has been approximated by dr/dt = k (Nordeng and
Sibley 1996; Kile et al. 2000), where r is the crystal radius and
k is a constant.

Constant (size-independent) growth can be simulated math-
ematically by:

Xj + 1 = Xj + kj, (1)

where Xj is the crystal diameter after j time intervals or steps
(or j iterations of the equation), and kj is a constant that is ap-* E-mail: dekile@usgs.gov
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Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous
solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent
(proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be dis-
tinguished from each other because the relative size difference among crystals is maintained during
proportionate growth, leading to a constant crystal size variance (b2) for a crystal size distribution
(CSD) as the mean size increases. The absolute size difference among crystals is maintained during
constant growth, resulting in a decrease in size variance. Results of these experiments show that for
centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth
occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized
to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is
related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate
growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of
convection and Brownian motion, which promote an advective environment and hence proportionate
growth for minute crystals in non-stirred systems, thereby indicating the importance of solution veloc-
ity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed
evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally
occurring crystals indicate that proportionate growth is by far the most common growth law, thereby
suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to
crystal surfaces.
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proximately equal for crystals of all sizes after growth for a
given interval of time, but not necessarily constant through time.
In other words, Equation 1 states that all of the geometrically
similar crystals in a system, regardless of their size, will grow
by the same linear amount (i.e., add a layer of material with the
same thickness) during a given time interval. The origin of this
type of growth has been ascribed to several crystal growth
mechanisms, including surface-reaction-limited polynuclear
growth and spiral growth (Nielson 1964; Ohara and Reid 1973;
Nordeng and Sibley 1996). These mechanisms are consistent
with classical spiral crystal growth theory as described by Bur-
ton, Cabrera, and Frank (i.e., the BCF model as described in
Bennema 1967, 1984), and with the three-step model of crys-
tal growth (e.g., as cited in Mullin 1972), whereby growth pro-
ceeds by a two-step process: (1) a diffusion step, wherein growth
is regulated by a boundary layer, the thickness of which is con-
trolled by solution velocity, etc.; and (2) a surface integration
step, with rates being controlled by the density of spiral growth
centers or hillocks that provide energetically favorable sites
for monolayer deposition. Surface integration rates also can be
controlled by crystal solubility and by environmental factors
such as solution temperature. The overall growth rate for a given
crystal is dependent upon which of these two steps becomes
rate limiting.

The constant growth law has been the foundation of many
attempts to model crystal growth; it underlies the population
balance equation used in petrology (e.g., Marsh 1988), the
growth models proposed by Kretz (1966), and the classic
Johnson, Mehl, and Avrami (JMA) approach (discussed in
Kirkpatrick 1981), among others. However, there is a growing
body of literature that contradicts the constant growth law. Pro-
portionate growth, evidenced in both natural and synthetic crys-
tal systems, appears to account better for observed CSDs, and
has been found in a variety of synthetic crystal systems studied
by Canning and Randolph (1967), Mullin and Gaska (1969),
Garside and Jaňcić (1976), Jones et al. (1986), Tai and Yu (1989),
and Tai et al. (1993). Proportionate growth also has been noted
in geologic systems [e.g., Nordeng and Sibley (1996), Kile and
Eberl (1999), Makowitz and Sibley (1999, 2001), and Meth
and Carlson (2002)]. Simple mathematical arguments that fa-
vor proportionate rather than constant growth for most natural
systems have been presented by Eberl et al. (2002a).

Proportionate (size-dependent) growth can be approximated by:

Xj + 1 = Xj + kjXj. (2)

This equation indicates that the amount a crystal will grow
through a certain time interval will be proportional to its initial
size. Proportionate growth (which has been approximated as
dr/dt = kr) has been ascribed to an accelerated solution veloc-
ity around larger crystals (McCabe and Stevens 1951), to a
greater density of dislocation defects on the surfaces of larger
crystals (Garside et al. 1976; Ristic et al. 1991; Jones and Larson
1999, 2000), and to the effects of lattice strain as a function of
crystal size (Ristic et al. 1997; Jones and Larson 1999, 2000).

Equation 2, and by analogy Equation 1, are considered to
be approximations because kj may contain inherent random-
ness. This randomness can be expressed using an equation simi-

lar to Equation 2, known as the Law of Proportionate Effect
(LPE), where kj is replaced by a random number (ej) that varies
between limits (usually 0 to 1). Such randomness is required to
produce a lognormal CSD, which is one of the most commonly
observed CSD shapes. A computer program (Galoper; Eberl et
al. 2000) uses the LPE to simulate the development of CSDs
for many types of minerals (Eberl et al. 1998; Kile and Eberl
1999; Kile et al. 2000; ́Srodoń et al. 2000) by both surface- and
supply-controlled growth. For example, supply-controlled
growth can be simulated by mathematically limiting the vol-
ume available for growth during each iteration of the LPE. The
mathematical effect of limiting supply is that ej will vary be-
tween zero and a very small number; growth approximates dr/
dt = kr after many growth cycles.

Constant growth (Eq. 1) can be distinguished from propor-
tionate growth (Eq. 2) by the effects these growth mechanisms
have on the shapes of CSDs. Constant growth maintains the
absolute size difference between crystals as mean size increases,
because such growth is described by adding the same layer
thickness to each crystal per unit time. For example, if one
crystal is two micrometers smaller than another at the begin-
ning of growth, this two-micrometer size difference will be
maintained throughout the growth process. Proportionate
growth, however, maintains the relative size difference between
crystals because growth is modeled by multiplying each size
by a constant. In other words, if one crystal is twice the size of
another at the beginning of proportionate growth, it will re-
main twice the size as growth proceeds.

The overall effect of Equation 1 on the CSD is to cause its
natural log-based crystal size variance (b2) for a given popula-
tion of crystals to decrease as mean size increases, whereas
growth by Equation 2 leads to a constant b2 for supply-con-
trolled growth. Only proportionate growth can generate and
maintain a lognormal CSD, and only proportionate growth can
maintain the theoretical shape for the universal steady-state
curve expected from Ostwald ripening, after ripening (which
occurs only at small crystal sizes) has ceased (Kile et al. 2000;
Eberl et al. 2002a). Galoper simulation shows, however, that
constant growth will cause the lognormal and Ostwald CSDs
to narrow with respect to their corresponding theoretical curves
as growth proceeds (Eberl et al. 2002a).

EXPERIMENTAL METHODS

We hypothesized that proportionate growth is likely due to a hydrodynamic
effect that results from a faster solution velocity around larger crystals (analo-
gous to the Bernoulli effect), as documented, for example, by McCabe and
Stevens (1951) and Mullin and Gaska (1969). In free-flowing systems, larger
crystals also could cause a greater disturbance to flow, leading to greater turbu-
lence and therefore to greater mixing in the vicinity of the crystal. To test the
hypothesis, the rate of crystal growth was studied in both non-stirred and in
stirred systems for two minerals: (1) centimeter-sized potassium alum crystals
having different initial sizes, for which the growth rate of each crystal could be
measured based on weight change: and (2) micrometer-sized calcite crystals,
for which growth rate could be determined by direct microscopic measurement
of size to determine the CSD shape.

Three types of experiments were designed accordingly to assess the effect
of growth conditions on growth law: (1) alum crystals were grown by evapora-
tion, under both static (unstirred) and dynamic (stirred) conditions, in multi-
crystal systems; (2) calcite crystals were grown in bulk aqueous solution without
stirring, and results from this experiment were compared to results from stirred
experiments conducted by Kile et al. (2000); and (3) calcite crystals were grown
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in a silica-gel medium to minimize the effects of solution advection on crystal growth.
Also investigated were two natural occurrences of minerals thought to have

grown in static systems. Therefore, the shapes of their CSDs should reflect to
some extent crystal growth that is constrained by diffusion-limited reactant sup-
ply. The first occurrence is calcite crystals found as small rhombohedra (mean
diameter 13.5 mm) within minute fractures in a “molar tooth” structure in the
Proterozoic Helena Formation of the Middle Belt Carbonate, Montana (Furniss
et al. 1998). The second occurrence is crystals (possibly greigite, an Fe sulfide)
that grew within pennate diatom silica exoskeletons from a single species found
in sediment core samples (at a depth of 4 to 5 cm) collected from Pyramid Lake,
Nevada. These crystals (mean diameter = 3.6 mm) presumably formed in reduc-
ing environments within the diatoms in response to decomposing organic mat-
ter in a recently deceased organism.

The growth of individual crystals is emphasized in the present study be-
cause of complications inherent in batch methods of crystallization, e.g., mixed-
suspension mixed-product removal (MSMPR) or fluidized-bed crystallizers. In
contrast to single-crystal studies, agitated batch crystallizers obscure the growth
mechanism and rates for individual crystals. For example, agitation in batch
crystallizers has been shown to be a source of secondary nucleation. Moreover,
crystal damage resulting from particle collisions can presumably lead to addi-
tional growth spirals and consequent apparent size-dependent growth effects;
this effect may be magnified for larger crystals that are more likely to have
increasingly energetic collisions.

Alum was chosen for the present work because its high solubility gives a
substantial yield per unit volume of water evaporated, and because of the rela-
tive ease of growing large crystals with minimal imperfections. An additional
advantage is that crystal mass can easily be quadrupled during the course of the
experiment, minimizing measurement errors. The disadvantage in working with
a few large crystals is that randomness inherent in the system (e.g., as caused by
variations in flow rates around crystals, heterogeneities in solution composition
and in crystal surface structure, etc.) may tend to obscure growth tendencies
when only a few crystals are measured.

Alum crystals [KAl(SO4)2
.12H2O; A.C.S. Certified Reagent, Fisher Scien-

tific] were grown by evaporation from saturated aqueous solution, using proce-
dures modified from Holden and Singer (1960). Both temperature-controlled
and ambient-temperature experiments were carried out. Temperature-controlled
experiments were conducted using a water-jacketed crystallization vessel of
about 6L capacity that accommodated from 10 to 12 crystals (Fig. 1). Tempera-
ture control was maintained with a circulating refrigerated/heated water bath,
with a temperature setpoint of 29.7 ± 0.2 ∞C. Ambient temperature experiments
were carried out in a 4 L single-wall glass chromatography vessel, which held
from 4 to 6 crystals. Crystals were suspended from a Plexiglas platform by
nylon threads, and also mounted with Epoxy on 2 mm diameter glass rods (us-
ing a pre-drilled hole in the crystal) that were attached to a Plexiglas plate on
the bottom of the vessel. The solutions in these experiments were stirred with a
variable speed stirrer and propeller that was positioned in the center of the ves-
sel; the speed was varied between 122 and 272 RPM. One experiment was stirred
using a magnetic bar (see Table 1).

Saturated alum solutions were filtered (Gelman Metricel 45 mm membrane
filter) and equilibrated for approximately 24 h prior to the addition of seed crys-
tals. Supersaturation was maintained at a constant level through controlled evapo-
ration, the rate of which was adjusted by raising or lowering the height of a
Plexiglas lid on the water-jacketed crystallizing vessel, or by varying the dis-
tance between two shutters that were positioned on top of a hole in this lid. For
the unstirred experiments, conducted at about 29 ∞C, the rate
of evaporation varied from 1.81 to 6.06 mL/h. The rate of evapo-
ration for stirred experiments, conducted at 29.7 ∞C, varied from
6.14 to 7.17 mL/h.

The level of supersaturation (s), monitored for most ex-
periments, is defined as:

s =
-C C

C

*
*

(3)

where C is the solution concentration and C* is the equilib-
rium concentration at saturation, in g/g solution. Solution con-
centration was determined both gravimetrically and by
refractometry. The equilibrium solution concentration was ap-
proximately 143.5 g/g solution at 29.7 ∞C, whereas the average
solution concentration for stirred experiments was measured at

151.0 g/g solution; the average s was therefore 0.052.
Alum, an isometric mineral, grows in a predominantly octahedral {111}

form, with {100} modifications. Assuming symmetrical growth of these forms,
crystal volume can be approximated from weight by modeling a spherical shape.
Crystal size for alum was determined by weight, with the diameter being calcu-
lated based on crystal density (r = 1.757 g/cm3).

The effect of stirring on calcite CSDs was investigated by synthesizing cal-
cite crystals in aqueous solution by mixing equimolar solutions of CaCl2

.2H2O
and Na2CO3, and allowing crystallization to proceed without stirring. These
experiments are in contrast to earlier ones that documented CSDs obtained from
stirred solutions (Kile et al. 2000). Accordingly, solutions of 0.00835 M
CaCl2

.2H2O and Na2CO3, with 0.50 M NaCl to inhibit vaterite formation, and
0.05 M KNO3 to control ionic strength, were mixed and filled to overflowing in
a 120 mL vessel, which was capped and allowed to sit without stirring for ap-
proximately 17 h. The calcite precipitate then was filtered through a 0.45 mm
cellulose nitrate filter (Millipore) and air dried. Crystals were mounted in Canada
balsam on a glass slide, and the crystal size was measured across the long di-
agonal of the rhombohedral form. The diameters of the micrometer-sized cal-
cite crystals were measured using a polarized-light microscope with a calibrated
filar micrometer ocular. Microscopic measurements eliminate errors that can be
introduced when using automated methods. For example, laser-light scattering
instruments such as a Coulter counter may measure crystal aggregates as a single
crystal (Kile et al. 2000), leading to an overestimation of size and consequently
to inaccurate determinations of CSD shape.

The relative initial concentration of the solution (W) was approximately
500, where W = Q/Ksp, and Q = [H+]/[Ca2+][HCO3

–]. Values in brackets refer to
activities in solution, and Ksp is the solubility product of calcite crystals in the
standard state. Further details are given in Kile et al. (2000).

Calcite crystals also were grown in a silica-gel matrix by the method of

FIGURE 1. Water-jacketed crystallization vessel with variable-speed
stirrer for alum experiments.

TABLE 1.  Growth parameters for alum experiments

Expt. Stir rate T  (∞C) Evap. rate Average C s Slope* Duration
no. (rpm) (mL/h) (g/L) (Eq. 3) (Fig. 2) (h)
4-11-00 122† 24 Nd Nd Nd 0.284 1032
9-6-00 176 29.7 6.14 148.7 3.62 0.337 172
9-22-00 176 29.7 7.08 160.1 11.6 0.212 168
1-08-01 272 29.7 7.17 144.1 0.42 0.0648 144
2-28-01 171 29.3 1.83 Nd Nd 0.0648 672
12-99 0 24 Nd Nd Nd 0.055 360
4-00 0 24 Nd Nd Nd –0.030 1296
10-12-00 0 29.7 6.75 152.2 6.06 0.011 188
12-4-00 0 29.2 1.81 147.3 2.65 –0.019 432
Note: Nd = not determined.
* Slope determined from line drawn to exclude outliers.
† Magnetic stir bar used in place of propeller.
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Henisch (1988), a method that is presumed to minimize reactant transport by
advection. Both a U-shaped tube and a straight column were used in these ex-
periments. A 15 mm inside diameter U-shaped tube was partly filled with a
sodium meta-silicate gel (0.2 M Na2SiO3

.9H2O; J.T. Baker Analyzed Reagent,
pH adjusted to ~7 with acetic acid). The gel, after solidifying, was overlain on
one end with a 0.16 M solution of (NH4) 2CO3 (EM Science), and on the other
end by a 0.16 M solution of CaCl2

.2H2O (Fisher, A.C.S.). Movement of the
reactants through the gel from opposite ends of the tube ultimately resulted in
crystal nucleation that was followed by growth that continued for 6 to 8 weeks.
This gel method yielded macroscopic calcite crystals, the sizes of which were
determined by measurement of linear dimensions from a photograph. Crystals
formed within the U-shaped column occurred in two distinct Liesegang rings
each with a considerably different mean crystal size; however, there were too
few crystals in one of the rings to yield an accurate CSD shape.

Sodium meta-silicate gel used in the 30 mm (inside diameter) straight col-
umn was prepared as above, with the exception that 0.16 M ammonium carbon-
ate was incorporated into the gel. The column was partly filled with the gel,
after which the gel was overlain with 0.16 M calcium chloride. Three distinct
Liesegang rings were formed near the top of this column, with mean crystal
sizes being progressively larger farther down the column. Crystal size was mea-
sured (using an ocular micrometer and a low-power stereomicroscope) and tabu-
lated for populations within each ring following separation of the crystals from
the gel.

CSDs were determined from crystal size data using the program
CrystalCounter (Eberl et al. 2000). In general, group size was set to a minimum
that mitigated the “noise” level in the plot. This criterion for the choice of group
(i.e., bin) size proved to be important because the universal steady-state CSD
shape that results from Ostwald ripening according to LSW theory (Lifshitz,
Slyozov, and Wagner; see Eberl et al. 1998) can be deformed into a lognormal-
appearing CSD if the group size is too large. The program then calculates the
CSD shape, the mean crystal size, the mean of the natural logarithms of the
sizes (a), and the variance of the natural logarithms of the sizes (b2, see below).
The chi-square (c2) test (Krumbein and Graybill 1965) and the K-S (Kolmogorov-
Smirnov) test (Benjamin and Cornell 1970) were used to assess the fit of the
data to theoretical and calculated CSDs. The c2 test, which uses a differential
distribution, is more stringent than the K-S test, which uses a cumulative distri-
bution; however the K-S test is useful if there are less than 10 size groups (bins)
for the data, and/or if the data are noisy. These statistical tests compare CSDs of
measured size distributions to theoretical lognormal distributions, and give a
level of significance ranging from <1% (i.e., the CSDs are not the same) to
>10% (i.e., a high level of significance) for the K-S test, or from <1% to >20%
for the c2 test. CSDs are considered to be the same if the significance level for
comparison between the measured and theoretical curves is equal to or greater
than the 1 to 5% range (Exner and Lukas 1971). No conclusions regarding our
data were made without statistical confirmation, which was used to indicate
lognormality as well as to compare measured CSDs with simulated (Galoper)
or theoretical CSDs. Probability paper commonly is used as a rapid, qualitative
check on the normality of a distribution. If normal, a plot of the cumulative
frequency shows a straight line; if log scales have been used, then the straight
line shows that the distribution is lognormal. However, the c2 and K-S tests are
more quantitative than the graphing method because a significance level can be
assigned to the fit.

RESULTS AND DISCUSSION

Alum experiments

Figure 2 presents results of alum crystal growth experiments
for stirred (Fig. 2a) and unstirred (Fig. 2b) systems. The initial
diameter for each crystal is plotted vs. its amount of growth
(final diameter minus initial diameter). Scales for ordinate and
abscissa are the same for both plots to facilitate a direct com-
parison. The slopes of the lines (i.e., the size-dependent effect)
in Figure 2a are approximately proportional to the amount of
crystal growth in a given experiment. The relevant growth pa-
rameters for these experiments are given in Table 1.

A comparison between these two plots clearly shows the
effect of solution velocity as manifested by the slope of the
lines. Figure 2 may indicate that proportionate growth is re-

lated to a hydrodynamic effect that depends on stirring, whereby
the velocity of a liquid medium flowing around an object in-
creases in direct proportion to the object’s circumference, and,
therefore, in direct proportion to its diameter. This result also
is consistent with the diffusion step in the three-step model
(and variations thereof) of crystal growth, whereby the bound-
ary layer thickness may decrease as velocity increases, thereby
leading to an increased growth rate for larger crystals (e.g.,
Canning and Randolph 1967; Abegg et al. 1968). Thus, crystal
growth under stirred conditions results in proportionate growth
(i.e., larger crystals tend to grow faster) according to Equation

FIGURE 2. Growth rate as a function of initial crystal size measured
for (a) stirred and (b) unstirred systems for alum crystals.

a

b
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2, whereas growth under unstirred conditions yields constant
growth according to Equation 1.

Some crystals in the stirred experiments had growth rates
that deviated considerably from the mean. This “noise” may
be explained in part by an intrinsic randomness in the system
(Eberl et al. 1998), which, as mentioned above, may result from
variation in physical properties of crystals [e.g., lattice strain
and dislocation density as suggested by Ristic et al. (1991,
1997), and Jones and Larson (1999, 2000)] that may lead to
different inherent growth rates for individual crystals such as
reported by Berglund (1983), or result from a heterogeneous
solution environment (e.g., variable advective currents).

Calcite experiments.

Micrometer-size calcite was crystallized in bulk solution
without stirring to investigate further the influence of advec-
tion on proportionate growth. The CSD (Fig. 3) shows a log-
normal curve (c2 level of significance = 5–10%; K-S test >10%)
with a b2 of 0.23 (Table 2). The similarity of this plot to those
generated in stirred systems (Kile et al. 2000) is evidence for
proportionate growth, because this mechanism of crystal growth
is the only straightforward approach that can consistently gen-
erate and maintain a lognormal CSD (Eberl et al. 2002a). Con-
vection and Brownian motion of the crystals are the likely means
for advective transport of reactants. This observation seems
contrary to the finding of constant growth for the alum unstirred
experiments; however, the data can be explained in terms of
solution velocity relative to crystal size. Although solution
motion is minimal for the calcite experiment, advective move-
ment may be considerable in proportion to the mean crystal
size (28.2 mm for calcite vs. cm-sized for alum).

In the straight-column gel experiment, the upper and middle
Liesegang rings contained the smallest- (mean = 60 mm) and
medium-size (mean = 147 mm) crystals, respectively, whereas
the deepest ring contained the largest crystals (mean = 313 mm).

FIGURE 3. CSD for calcite formed in a non-stirred system, with
theoretical lognormal curve.

FIGURE 4. CSD measured for calcite grown in a 30 mm straight
column: (a) upper Liesegang ring; (b) middle Liesegang ring; (c) lower
Liesegang ring plotted using reduced axes.

c

b

a
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The CSDs for the upper and middle rings follow the shape ex-
pected for Ostwald ripening according to LSW theory (Figs.
4a and 4b). Chi-square comparisons between the measured and
the theoretical Ostwald CSDs yielded significance levels of
2.5 to 5% for the upper ring and <1% for the middle ring, but
the K-S test yielded a significance level of >10% for both rings.
The size variance (b2) of both CSDs (0.057 and 0.064) are those
expected for the theoretical shape (0.06). However, the crys-
tals in these rings are too large to have grown entirely by
Ostwald ripening, which, for calcite, should be effective at low
temperatures only for crystals having sizes much less than 0.1
mm (Morse and Wang 1996). Ripening is not expected for larger
sizes because specific surface energy differences for such crys-
tals are too small to drive the ripening process. Therefore, it is
proposed that the initial shapes of these CSDs resulted from
Ostwald ripening at very small sizes (<<100 nm, and probably
<10 nm; Kile et al. 2000), and that this ripening was followed
by proportionate growth that preserved the Ostwald CSD shapes
as the crystals grew larger.

The CSD shape for the lowest ring (Fig. 4c) also appears to
follow the Ostwald shape in that the distribution is skewed to
the left; it is much narrower, however, than the Ostwald CSD,
having a b2 of 0.016 rather than the theoretical value of 0.06. If
169 mm is subtracted from each crystal size and the CSD recal-

FIGURE 5. Calcite crystals found in the Proterozoic molar tooth structure: (a) measured CSD compared with the Galoper simulation (c2 >
20%) and the theoretical CSD expected for Ostwald ripening; (b) measured CSD with constant growth stage subtracted from the crystal sizes
compared with the theoretical Ostwald curve.

TABLE 2.  CSD parameters for calcite experiments

Experiment Mean  size, Group size a  b2 Mean size at b2 at start % McCabe’s
mm (nm) (from nm) start of McCabe’s    of McCabe’s  growth

growth (mm) growth
Small  fraction, 30-mm column 59.8 10000 10.97 0.057 NA NA NA
Medium fraction, 30-mm column 147.2 28000 11.87 0.064 NA NA NA
Large fraction, 30-mm column 312.9 26000 12.64 0.017 173.9 0.066 44
U-tube (gel) large fraction 565.5 50000 13.23 0.038 438.3 0.070 22
Calcite, “molar tooth” 13.3 1600 9.49 0.021 7.5 0.064 44
Calcite, unstirred 28.2 6300 10.14 0.227 NA NA NA
Note: NA = not applicable.

culated (Fig. 4c), then the theoretical Ostwald CSD is achieved
with a K-S test significance level of >10%. This CSD shape
can be attained with a proposed growth history whereby crys-
tallization initially starts with Ostwald ripening, followed by
proportionate growth, as was hypothesized for crystals in the
two upper rings. But when the mean size reached 144 mm for
calcite in the lowest ring, the growth mechanism changed from
proportionate growth to constant growth, at which time the crys-
tals grew an additional 169 mm to their present size. The growth
mechanism presumably changed because the supply of reactants
changed from advective supply to diffusive supply, perhaps due to
a change in porosity caused by a compression of the gel surround-
ing the comparatively large crystals in the lowest ring.

In the U-tube experiment, only the lowermost ring had suf-
ficient crystals to be measured; these reacted similarly to those
found in the lowest ring in the straight column. Calculations
show a growth history of Ostwald ripening followed by pro-
portionate growth that resulted in a mean crystal size of 438
mm; this was then followed by a brief period of constant growth
to a mean size of 565 mm.

Natural analogs

Most CSDs measured from natural systems show either a
lognormal shape or a closely related asymptotic shape. Rarely,

ba



KILE AND EBERL: SIZE-DEPENDENT AND SIZE-INDEPENDENT CRYSTAL GROWTH1520

the Ostwald universal steady-state shape may be observed in
the CSDs. As was discussed above, all of these shapes indicate
proportionate growth after the formation of the initial CSD
shape (e.g., Eberl et al. 1998, and references therein; Kile and
Eberl 1999; Kile et al. 2000; Eberl et al. 2002a). Evidence for
a constant growth mechanism appears to be rare in geologic
systems. We have found only two possible isolated examples,
which are described below.

Calcite in proterozoic limestone

A CSD for calcite crystals that are found in minute frac-
tures within Proterozoic Belt Series limestone (“molar tooth
structure”) shows evidence for constant growth. The CSD has
the negative skew expected for the Ostwald universal steady-
state shape, but is much too narrow to fit an Ostwald profile
because the b2 is 0.02, rather than 0.06 that is expected for
Ostwald ripening. The CSD can be simulated in the same man-
ner as was the lowest Liesegang ring in the experiments dis-
cussed above by assuming that the Ostwald shape was modified

by constant growth. The Galoper simulation (Fig. 5a) starts
with nucleation and growth, followed by Ostwald ripening, then
consecutively by proportionate growth and constant growth.
Given this crystallization sequence, constant growth would have
started when the mean crystal size was 7.5 mm, and then con-
tinued to the mean size of 13.5 mm. Subtracting 6 mm (see Eq.
1) from each crystal size exactly restores the Ostwald steady-
state shape (Fig. 5b). The CSD can be simulated equally well
if the last two growth stages are reversed; however, based on
geological and geochemical considerations, the first growth
sequence would be more likely. Because the rate of crystal
growth during the constant portion of the growth history was
presumably limited by ion diffusion through microfractures in
a compacted marine sediment (Furniss et al. 1998), and be-
cause the Ostwald shape indicates that rapid nucleation occurred
at large levels of supersaturation (Kile et al. 2000; Eberl et al.
2002b), a crystal growth history can be proposed whereby: (1)
rapid nucleation followed by Ostwald ripening occurs under
conditions of high supersaturation, followed by (2) a period of
proportionate growth, which in turn changes to (3) constant
growth as increasing sediment compaction slows the reactant
supply rate.

Fe sulfide in diatoms

CSDs for the Fe- sulfide crystals found within numerous
diatoms (Fig. 6a) in sediments from Pyramid Lake, NV also
show a narrow profile (b2 = 0.069; Fig. 6b), perhaps indicative
of constant growth; exclusion of the small bimodal peak at the
left of the plot narrows the size variance of this profile even
further, to 0.047. This CSD was simulated by a mechanism of
nucleation and growth, followed consecutively by Ostwald rip-
ening, proportionate growth, and constant growth. A period of
constant growth is required to generate the small b2. However,
this growth sequence is speculative because there may be other
reaction pathways that could generate this CSD. The semi-per-
meable silica exoskeleton may have limited the influx of reac-
tants to supply by diffusion, resulting in constant,
size-independent crystal growth.

SUMMARY REMARKS

Experimental evidence indicates that crystal growth mecha-
nisms are governed by the nature of the transport of reactants
to the crystal surface. Accordingly, constant, size-independent
growth (Eq. 1) results when reactant supply to crystal surfaces
is diffusion-limited, whereas proportionate, size-dependent
growth (Eq. 2) results when reactants are supplied by advec-
tion. Proportionate growth thus is expected whenever the rate
of reactant supply by advection exceeds that by diffusion. Pro-
portionate growth is evidenced by lognormal CSDs; by con-
trast, constant growth is evidenced by very small size variances
(e.g., b2 less than 0.06 for Ostwald-like CSDs). Thus, CSDs
measured for naturally occurring minerals indicate that crys-
tallization by constant, diffusion-controlled growth is rare.

Advection appears to control growth even in seemingly stag-
nant conditions, e.g., within miarolitic cavities and septarian
concretions, where lognormal CSDs have been recorded (Kile
and Eberl 1999). Therefore, in geologic systems, advection,
rather than diffusion, appears to dominate the growth process.

FIGURE 6. Greigite (?) from Pyramid Lake, Nevada: (a)
photomicrograph of crystals found within diatom tests, and (b) CSD
measured for crystals compared with a Galoper simulation (c2

significance >20%).
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