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INTRODUCTION

There may be a serious flaw in application of the popular
crystal size distribution (CSD) analysis method that uses popu-
lation-balance modeling. This technique for analyzing CSDs
was developed in the chemical engineering industry (Randolph
and Larson 1971) and first applied to rocks by Marsh (1988).
The problem discussed here differs from the one recently pro-
posed by Pan (2001) concerning inherited correlation, the va-
lidity of which has been debated (Schaeben et al. 2002; Marsh
and Higgins 2002; Pan 2002a, 2002b). The present problem is
related to the assumption, made in most geological papers on
the subject, that, once nucleated, all crystals will grow at the
same linear rate, a rate that is independent from crystal size.

The solution to the population-balance equation used with
these (and other) assumptions is:

ln(n) = ln(n0) – L/Gt (1)

where n is the crystal population density (number of crystals
per given size class per unit volume); L is the characteristic
crystal size, measured for a consistent linear direction in the
crystals; n0 is the population density of nucleus-size crystals (it
is n when L approaches zero); G is the mean linear growth rate,
which is independent of L; and t is the average crystal resi-
dence time in the system (Randolph and Larson 1988; Marsh
1988; Cashman and Marsh 1988; Mersmann 2001).

Equation 1, which is used both by chemical engineers and
by geologists, is a greatly simplified version of the more gen-
eral population-balance equation. According to Mersmann
(2001), the derivation and application of Equation 1 assumes

ideal mixing in a continuously operated industrial crystallizer
that is running in a steady-state condition in which there are no
fluctuations in operating conditions with respect to time. The
feed solution is generally free of crystals, and the slurry is re-
moved continuously at a single flow rate. There is assumed to
be no crystal breakage, attrition or agglomeration, and solu-
tion and crystals have the same mean residence time (t) in the
crystallizer. In addition, the linear crystal growth rate is as-
sumed to be independent of crystal size, which is the assump-
tion that is the focus of the present paper. Also according to
Mersmann (2001, p. 156), Equation 1 applies only to MSMPR
(mixed suspension, mixed product removal) crystallizers.

It will be shown that a linear growth rate is not independent
of size, but, rather, that growth rates which generally increase
with crystal diameter provide a more robust description of ob-
served CSDs for most crystallizing systems. Other investiga-
tions using alternative calculation methods, which have
assumed a growth rate that is independent of crystal size (e.g.,
Kretz 1966; Carlson et al. 1995), and constant growth equa-
tions that are discussed in Nielson (1964), Kirkpatrick (1981),
Randolph and Larson (1988), and Lasaga (1998) also may be
unrealistic. Therefore, geologic conclusions drawn from Equa-
tion 1 and from the alternative methods are questionable. These
conclusions involve both qualitative models of geologic pro-
cesses, such as the movement, mixing, and crystallization of
magmas, and quantitative calculations such as nucleation rates,
residence times, or growth rates for crystals in magmatic and
metamorphic rocks.
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Geological interpretations of crystal size distributions (CSDs) depend on understanding the crys-
tal growth laws that generated the distributions. Most descriptions of crystal growth, including a
population-balance modeling equation that is widely used in petrology, assume that crystal growth
rates at any particular time are identical for all crystals, and, therefore, independent of crystal size.
This type of growth under constant conditions can be modeled by adding a constant length to the
diameter of each crystal for each time step. This growth equation is unlikely to be correct for most
mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are
among the most common types of CSDs observed in rocks. In an alternative approach, size-depen-
dent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a
factor, an operation that maintains CSD shape and variance, and which is in accord with calcite
growth experiments. The latter growth law can be obtained during supply controlled growth using a
modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction
path followed by a CSD shape as mean size increases.
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Xj+1 = Xj + kj (2)

where Xj is the crystal diameter after j iterations of Equation 2
(or after j time steps), Xj+1 is the diameter after one additional
iteration, and kj is constant for all crystals for a given iteration.
Equation 2 is a form of an equation known in the chemical
engineering literature as “McCabe’s delta L law” (McCabe
1929), which states that geometrically similar crystals of the
same material when suspended in the same solution grow at
the same linear rate (Canning and Randolph 1967). Such con-
stant growth was later shown by McCabe himself (McCabe
and Stevens 1951) to be relatively unimportant for describing
growth in industrial crystallizers in comparison to size-depen-
dent growth because of the effect of size on crystal velocity
through solution.

At first, growth by McCabe’s law seems to be a reasonable
model for calculating how crystals in populations of crystals
may grow, especially for crystals that are large enough to be
minimally affected by the Gibbs-Thomson effect (i.e., Ostwald
ripening; Lasaga 1998). There are no obvious thermodynamic
or kinetic reasons to suppose that ions should migrate to or be
incorporated into a crystal’s surface at a rate that is directly
proportional to crystal diameter. However, the phenomenon of
size-dependent growth (often accompanied by growth disper-
sion in which crystals of the same size grow at different rates)
has been reported widely in experiments [see references in
Randolph and Larson (1988), Marsh (1988), Eberl et al. (1998a),
and Mersmann (2001)]. Marsh (1988; Eq. 56) suggested a com-
pletely arbitrary but flexible function to describe this type of
growth, but subsequent papers in the geological literature (e.g.,
most recently, Higgins 2002) continue to assume constant
growth. Use of McCabe’s law in the past was justifiable be-
cause a simple mathematical expression for size-dependent
growth was lacking [although an empirical expression was pre-
sented by Canning and Randolph (1967), among others]. How-
ever, it will be shown that McCabe’s law is inadequate to
describe crystal growth in many systems, and that there may
be a better approach.

The consequences of having Equation 2 as the growth law
are explored by considering some typical lognormal CSDs (Fig.
1). Lognormal CSD shapes are common for diverse mineral
species from many types of igneous, metamorphic, and sedi-
mentary rocks (Eberl et al. 1998a; and references therein). The
CSDs in Figure 1 have mean sizes that range over seven orders
of magnitude, and they are lognormal by a chi-square test (see
significance levels in Fig. 1; significance levels >1% indicate
that the measured distributions are lognormal). The other com-
monly observed CSD shape in geologic systems is asymptotic
(Eberl et al. 1998a), which also will be discussed below.

A lognormal CSD (e.g., Fig. 1A) cannot be generated readily
by a constant-growth mechanism. For example, if all of the
crystals nucleated simultaneously and grew according to Equa-
tion 2, the entire CSD would be represented by a single point
in Figure 1A with a frequency of 1.0 and with a size that de-
pends on the constant linear growth rate and time. If nucle-
ation occurred through time at a constant rate, the CSD would
be a line parallel to the x (size) axis. The only way to generate
a lognormal-appearing CSD using a size-independent growth

rate in a batch system (i.e., in a system in which crystals can-
not leave or enter) is to assume that the nucleation rate varied
through time. For example, the CSD in Figure 1A could be
generated if nucleation were to start slowly to yield the right
side of the CSD, to build to a maximum rate to generate the
mode, and then to die out quickly to give the short left tail of
the CSD. Alternatively, the nucleation rate could have increased
exponentially with time, but at the end of the process the fine
crystals were resorbed, or annexed, or starved for reactants to
give the down-turn on the left side of the CSD (e.g., Marsh
1998). In an open system where crystals can enter and leave
(e.g., through magma mixing or crystal settling), various com-
plex scenarios can be imagined that could approximate this CSD
shape. However, the probability of fortuitously generating a
lognormal CSD by one of these constant-growth mechanisms
is highly unlikely to account for its common occurrence in di-
verse geological environments. Thus, to generate a lognormal
shape frequently by differential nucleation, one would have to
assume some unknown mechanism that would consistently
nucleate a lognormal CSD. However, even if such a mecha-
nism prevailed in the great diversity of systems that contain
lognormal CSDs, subsequent crystal growth according to Equa-
tion 2 would destroy the CSD’s lognormality, because a log-
normal shape can be retained by multiplying its crystal sizes by a
constant (Crow and Shimizu 1988), but not by adding a constant.

Another argument against a constant growth rate according
to Equation 2 is the general observation that nucleation occurs
over a relatively short period of time at initially high levels of
supersaturation (e.g., Lasaga 1998). The level of supersatura-
tion drops quickly as nuclei appear and grow, rendering ex-
tended nucleation less likely. If the lognormal CSD was
developed quickly by differential nucleation while the crystals
were in the sub-micrometer size range, the absolute size differ-
ence between crystals would be maintained as crystals grew
according to Equation 2 into the millimeter size range. In other
words, if nucleation ceased while all of the crystals were still
less than one micrometer in diameter, at the end of growth into
the millimeter size range all of the crystals would be almost
exactly the same size, differing by less than a micrometer. Al-
ternatively, one could argue that nucleation occurred over a
long interval. For example, the 2 cm crystals in the CSD in
Figure 1A could have nucleated when the currently 4 cm-size
crystals previously had grown to 2 cm; then both sizes grew to
their current sizes at the same rate. This scenario requires a
convoluted growth process whereby: (1) a large level of super-
saturation was maintained over a long interval; and (2) crystals
of all size classes would have had to nucleate and grow in the
manner described to give a lognormal shape to the distribution
at the growth limit.

The problems of forming and maintaining the shape of a
lognormal CSD are solved if the shape is produced during
growth rather than during nucleation. As has been discussed
previously (Eberl et al. 1998a), a lognormal CSD can be gen-
erated mathematically from previously nucleated crystals by
size-dependent (proportionate) growth according to the Law
of Proportionate Effect (LPE):

Xj+1 = Xj + ejXj (3)
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FIGURE 1. CSDs (solid circles) and lognormal fits (lines) with significance levels for chi-square test between the two. (A) Microcline, 1989
(Kile and Eberl 1999); (B) Zircon B, L total (Nemchin et al. 2001); (C) Calcite, SE Colorado (Kile et al. 2000); (D) Illite, Zempleni (Środoń  et
al. 2000); (E) Gypsum from Jet, Oklahoma (this paper); (F) Garnet, Specimen 2 (Kretz 1966). Only the zircon CSD measurement (Fig. 1B)
possibly is subject to stereological problems because it was measured from thin section.
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where Xj is the initial diameter of a crystal in a population of
crystals; ej, termed system variability, is a small random num-
ber that ranges between limits (generally between 0 and 1),
and that differs for each crystal and for each growth cycle; and
Xj+1 is the new crystal diameter after one growth cycle (i.e., one
iteration) of Equation 3. Calculations using Equation 3 that are
repeated several times for many crystals yield a lognormal size
distribution. The number of iterations correspond to time in
some, as yet, undetermined manner. The ejXj term leads both to
size-dependent growth and to growth dispersion.

Equation 3 is basically empirical, but is assumed to be a
fundamental crystal growth law because we know of no other
way to form the lognormal distribution by growth, and because
it provides a robust description of the observations. The log-
normal shape can form in surface-controlled growth during
which the volume of reactants available for growth during each
cycle of Equation 3 is essentially unlimited. As crystallization
proceeds, the growth type may change spontaneously from sur-
face-controlled, in which the natural log-based variance [b2 =
S(lnX – a)2 f(X), where f(X) is the frequency of size X] of the
CSD increases linearly with the natural log-based mean size
[a = Sln(X)f(X)], to supply controlled, during which b2 may
remain almost constant as a increases. The growth mechanism
may change as crystals grow larger because surface-controlled
growth requires an exponentially increasing supply of reac-
tants through time, and therefore cannot be sustained.

In the calculation for supply controlled growth, growth is
limited proportionately by the volume of reactants available
during each growth cycle (see Eq. 8 in Eberl et al. 1998a). Most
of the crystal mass may be added during this type of growth,
and the relative shape of the earlier-formed CSD (be it lognor-
mal, asymptotic, Ostwald, or some other shape) is maintained.
By this mechanism, for example, one can find the universal
steady-state CSD shape for Ostwald ripening (which has a nega-
tive skew) at crystal sizes that are far too large for ripening to
have occurred [because surface energy differences between
crystals are too small; e.g., calcite in Kile et al. (2000); garnet
in Miyazaki (1991)]. The Ostwald shape is formed by ripening
at small sizes, and then the relative shape is preserved during
supply controlled proportionate growth.

The above approach is favored by nearly exact (according
to chi-square test) simulation fits [using the GALOPER com-
puter program (The GALOPER program for simulating CSD
growth is available from: ftp://brrcrftp.cr.usgs.gov/pub/ddeberl/
mac_version (or…pc_version)/GALOPER); Eberl et al. (2001)]
to the observed shapes of CSDs from diverse mineral systems
[e.g., ice, dolomite, garnet, and galena in Eberl et al. (1998a);
microcline and quartz in Kile and Eberl (1999); calcite in Kile
et al. (2000); illite in Środoń et al. (2000)]. In addition, the
preservation of CSD shapes during supply controlled propor-
tionate growth has been demonstrated experimentally (Kile et
al. 2000).

Jackson (1961, p. 31) may have been the first to suggest
that lognormal size distributions found in rocks could be re-
lated to size-dependent growth, for olivine, chromite, and
bronzite crystals in the Stillwater Complex, Montana. The
mechanism that leads to proportionate growth is not well-es-
tablished in the literature, but it has been suggested that such

growth results in part from a faster relative solution velocity
around larger crystals during stirring (e.g., McCabe and Stevens
1951), or from a greater proportion of defects on the surfaces
of large crystals (Garside and Jancic 1976), or from the effects
of elastic strain (Ristic et al. 1997).

Although a definitive mechanism for the proportionate
growth of crystals is lacking, there is ample evidence that the
LPE (Eq. 3), and its modification during supply controlled
growth, provide a robust empirical description of CSD behav-
ior both in experimental systems (Kile et al. 2000, and refer-
ences therein) and in natural systems (e.g., Nordeng and Sibley
1996; Kile and Eberl 1999; Makowitz and Sibley 2001).

The consequences of growing a lognormal CSD by differ-
ent mechanisms is explored in Figure 2 using GALOPER cal-
culations. The lognormal CSD in Figure 2A was simulated by
surface-controlled LPE growth (Eq. 3; option 5 in GALOPER).
It has a mean size of 10 nm and a variance (b2) of 0.15. It then
was doubled in mean size (Fig. 2B, solid circles) by propor-
tionate growth (supply controlled growth modification of Eq.
3; option 6 in GALOPER), which yielded another lognormal
curve (significance level for chi-square test >20%) with the
same b2. In other words, the relative shape of the CSD in Fig-
ure 2A was preserved during proportionate growth. When the
mean size of the CSD in Figure 2A is doubled by constant
growth (Eq. 2), however, it loses its lognormal shape (Fig. 2C;
significance level <1%; chi-square value is 49.08 vs. a critical
value of 37.57 required for >1% significance, and the fit be-
comes worse with continued growth), and b2 decreases to 0.04.
Continued growth by this mechanism would cause b2 to ap-
proach zero (no matter what the original CSD shape). Then all
of the crystals would appear to have the same size. In other
words, growth by Equation 2, if it occurred to a significant
extent, could be recognized in the shapes of CSDs, and lognor-
mal CSDs could not be maintained. In fact, with sufficient
growth, CSDs in general could disappear, because at large sizes,
all of the variation in size could be collected into a single size
class. Hence, constant growth (Eq. 2) is unrealistic, especially
for minerals having lognormal CSDs.

Figure 2D further indicates how sensitive the shape of a
lognormal CSD is to modification by other growth mechanisms.
The lognormal CSD in Figure 2A was subjected to a simulated
Ostwald ripening by GALOPER to yield the CSD in Figure
2D. Although ripening was minimal (only 1% of the mass of
the crystals passed through solution), this type of reaction de-
stroys the CSDs lognormal shape (significance level is <1% in
Fig. 2D), and can be recognized immediately in the CSD shape.

The growth of CSDs simulated by supply control (Fig. 2B)
also can be modeled approximately if the crystal sizes in the
initial distribution (Fig. 2A) are multiplied by a factor (f =
X
–

/X
–

0, where X
–

0 and X
–

 refer to the initial and final mean sizes;
e.g., f = 20/10 = 2), as is indicated by open circles in Figure
2B. Multiplication by f retains both the lognormal shape of the
original distribution and its b2. Therefore multiplication approxi-
mately models GALOPER-simulated, supply controlled crys-
tal growth, during which b2 remains relatively constant,
although the two methods of calculation have not yet been re-
lated in a mathematically formal manner.

The change in f with mean size for supply controlled growth,
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in which reactants are available to the surface at a constant
rate, can be derived from the empirical Equation 9 in Eberl et
al. (1998a), which is based on GALOPER calculations:

f
n

X
= +1

1 3

0

c
. (4)

X
–

0 is the initial mean size; n is the number of growth cycles
(which may be a function of time); and c is a constant that is
proportional to the constant total volume added during each
growth cycle. Equation 4 can be used to predict the evolution
of a CSD only if the initial and final CSDs have approximately
the same b2. Furthermore, Equation 4 cannot be used to predict
the growth rate for individual crystals within a CSD, but only
growth for the CSD as a whole, because f approximates a set of
random numbers that vary for each crystal between certain lim-
its (e.g., predictions for individual crystals differ for the two
calculation methods shown in Fig. 2B, but the predicted CSD
shapes are the same).

A critical laboratory experiment (Kile et al. 2000), designed

to simulate the previous calculations, was performed to distin-
guish between the growth behaviors described by Equations 2
and 3. In this experiment, calcite was nucleated and grown from
a supersaturated solution, and the evolution of the CSD was
measured through time. Both the initial and the final CSDs
(Fig. 3A) were shown to be lognormal by chi-square test.
Growth of the initial CSD by Equation 2, whereby all of the
crystals grow by a constant amount, into the final CSD, while
preserving the lognormal shape, is not possible. For example,
increasing the mean size of the first distribution (7.8 mm) to
that of the second CSD (14.8 mm) by adding 7 mm to the size of
each crystal (Eq. 2) yields a CSD that is too narrow (dashed
line in Fig. 3B), whereas simulating the reaction path from
CCNG-44/1 to CCNG-44/2 using Equation 3 with the supply
controlled growth modification (option 6) in the GALOPER
computer program (heavy line in Fig. 3B) yields a much better
fit to the measured distribution. One also can multiply the sizes
of the original CSD by the factor f = 14.8/7.8 = 1.9 to realize an
equivalent result (thin, solid line in Fig. 3B).

In addition to the lognormal distribution, the asymptotic
distribution (Fig. 4A) is another common CSD in rocks. As-

FIGURE 2. The effect of growth mechanisms on the shape of a lognormal CSD. (A) Initial lognormal CSD (circles), simulated in GALOPER
by LPE growth (Eq. 3; GALOPER option 5), with lognormal fit (line). (B) CSD in (A) is doubled in size by supply controlled growth (solid
circles; GALOPER option 6) and by multiplication of the crystal sizes by 2 (open circles). (C) CSD in (A) is doubled in size by adding 10 nm
to each crystal size. (D) CSD in (A) is Ostwald ripened (GALOPER closed system option 1), allowing 1% of the crystal mass to pass through
solution.
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suming constant growth (Eq. 2), this shape has been attributed
to nucleation at an exponentially increasing rate (e.g., Higgins
2002). Assuming proportionate growth, however, this type of
distribution is simulated in GALOPER by the mechanism of
constant-rate (or accelerating-rate) nucleation with simulta-
neous size-dependent growth. In support of this mechanism,
the asymptotic CSD shape has been produced in constant-rate
nucleation experiments with calcite (see Fig. 2 in Kile et al.
2000). A semi-log plot (Fig. 4B) conveniently represents this
particular CSD as a straight line. However, previous geologi-
cal conclusions drawn from similar semi-log plots, using Equa-
tion 1 and the assumption of a constant linear growth rate, may
be misleading. For example, if constant-rate nucleation occurs
over an extended period, the semi-log plots yield curved (rather
than straight) lines that are concave upward, as also has been

noted by Marsh (1988). This shape is related to the faster growth
of larger crystals during simultaneous nucleation and growth.
Such concave curves are shown, for example, in the plots of
Higgins (2002, Fig. 2a) for crystals from andesite lavas, and in
Cashman and Marsh (1988, Fig. 4) for Makaopuhi lava lake
plagioclase, although the curvature is interpreted differently
by these authors.

GEOLOGICAL HISTORY FROM CSDS

Both experimental and natural mineral CSDs are empiri-
cally described by size-dependent growth (Eq. 3, and its modi-
fication during supply controlled growth), but are inconsistent
with constant growth (Eq. 2). These two growth laws lead to
very different interpretations of geologic history that can be
deduced from CSDs. For example, assuming constant growth

FIGURE 3. CSDs measured (Kile et al. 2000) and calculated for
calcite growth experiments. (A) Initial, measured CSD (CCNG-44/1;
squares) and final, measured CSD (CCNG-44/2; circles) with lognormal
fits (solid lines). The two calcites were taken from the same solution
after different reaction times. (B) The final, normalized, measured CSD
(CCNG-44/2; circles) modeled from the initial CSD (CCNG-44/1) by
Equation 2 (broken line), by supply controlled modification of Equation
3 using the GALOPER program (thick solid line), and by multiplying
by a constant (thin solid line).

FIGURE 4. CSD for the thicknesses of illite crystals (Le Puy illite;
Eberl et al. 1998b). (A) Measured distribution compared with
GALOPER simulation; (B) Natural logarithm of the number (n) of
crystals per size class per 1000 nucleated crystals (from GALOPER
simulation) vs. crystal thickness. The y-axis differs slightly from that
used in population balance modeling, for which the units are the natural
logarithm of the number of crystals per size class per unit volume of
the system.
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(Eq. 2), the oldest crystals in the CSDs shown in Figure 1 are
the largest (those in the extreme right tails of the distributions)
because these crystals must have nucleated first. Proportionate
growth (Eq. 3), however, indicates that all of the crystals could
have nucleated at the same time, with those in the right tails
having grown larger as a result of size-dependent growth and
growth dispersion. If Equation 2 is assumed, the CSDs record
nucleation history, whereas Equation 3 indicates that these par-
ticular CSDs developed in response to a growth mechanism,
but tells us little about nucleation history. Assuming constant
growth and reasonable growth times, some workers (e.g.,
Cashman and Marsh 1988) have used Equation 1 to extract
nucleation and growth rates from CSDs, using plots similar to
that shown in Figure 4B, whereas it may not be possible to
determine rates accurately in this manner when assuming size-
dependent growth, especially for log-linear plots that are curved.

Although absolute rates for crystallization processes can-
not be calculated from CSD shapes alone, the relative reaction
history of a mineral can be deduced because CSD shape may
be reaction-path dependent (Eberl et al. 2000, 2001). Such his-
tories may be modeled by simulating CSDs with GALOPER,
or with similar computer programs. It may be possible to link
these relative growth rates to absolute rates by finding the rela-
tion between time measured in the field or in laboratory ex-
periments and the number of growth cycles found by simulation.
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Eberl, D.D., Drits, V.A., and Środoń, J. (2001) User’s guide to GALOPER—a pro-
gram for simulating the shapes of crystal size distributions—and associated
programs. U.S. Geological Survey Open-File Report OF00-505, 44 p.

Garside, J. and Jancic, S.J. (1976) Growth and dissolution of potash alum crystals in
the subsieve size range. American Institute of Chemical Engineering Journal,
22, 887–984.

Higgins, M.D. (2002) Closure in crystal size distributions (CSD), verification of
CSD calculations, and the significance of CSD fans. American Mineralogist,
87, 171–175.

Jackson, E.D. (1961) Primary textures and mineral associations in the ultramafic
zone of the Stillwater Complex Montana. U.S. Geological Survey Professional
Paper, 358, 106 p.

Kile, D.E. and Eberl, D.D. (1999) Crystal growth in miarolitic cavities in the Lake
George ring complex and vicinity, Colorado. American Mineralogist, 84, 718–
724.

Kile, D.E., Eberl, D.D., Hoch, A.R., and Reddy, M.M. (2000) An assessment of
calcite crystal growth mechanisms based on crystal size distributions.
Geochimica et Cosmochimica Acta, 64, 2937–2950.

Kirkpatrick, R.J. (1981) Kinetics of crystallization of igneous rocks. In A.C. Lasaga
and R.J. Kirkpatrick, Eds., Kinetics of Geochemical Processes, 8, 321–398.
Reviews in Mineralogy, Mineralogical Society of America, Washington, D.C.

Kretz, R. (1966) Grain-size distribution for certain metamorphic minerals in rela-
tion to nucleation and growth. Journal of Geology, 74, 147–173.

Lasaga, A.C. (1998) Reaction Kinetics in Geoscience, 811 p. Princeton University
Press, Princeton.

Makowitz, A. and Sibley, D. (2001) Crystal growth mechanisms of quartz in a Cam-
brian quartz arenite. Journal of Sedimentary Research, 71, 809–816.

Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and
dynamics of crystallization I. Theory. Contributions to Mineralogy and Petrol-
ogy, 99, 277–291.

———(1998) On the interpretation of crystal size distributions in magmatic sys-
tems. Journal of Petrology, 39, 553–599.

Marsh, B.D. and Higgins, M.D. (2002) Inherited correlation in crystal size distribu-
tion: Comment. Geology, 30, 28–285.

Mersmann, A. (2001) Crystallization Technology Handbook. 832 p. M. Dekker,
New York.

McCabe, W.L. (1929) Crystal growth in aqueous solutions. Industrial Engineering
Chemistry, 21, 30–33.

McCabe, W.L. and Stevens, R.P. (1951) Rate of growth of crystals in aqueous solu-
tions. Chemical Engineering Progress, 47, 168–174.

Miyazaki, K. (1991) Ostwald ripening of garnet in high P/T metamorphic rocks.
Contributions to Mineralogy and Petrology, 108, 118–128.

Neilsen, A.E. (1964) Kinetics of Precipitation, 151 p. Pergamon, New York.
Nemchin, A.A., Giannini, L.M., Bodorkos, S., and Oliver, N.H.S. (2001) Ostwald

ripening as a possible mechanism for zircon overgrowth formation during
anatexis: Theoretical constraints, a numerical model, and its application to pelitic
migmatites of the Tickalara Metamorphics, northwestern Australia. Geochimica
et Cosmochimica Acta, 65, 2771–2788.

Nordeng, S.H. and Sibley, D.F. (1996) A crystal growth equation for ancient dolo-
mites: Evidence for millimeter-scale flux-limited growth. Journal of Sedimen-
tary Petrology, 66, 477–481.

Pan, Y. (2001) Inherited correlation in crystal size distribution. Geology, 29, 227–
230.

———(2002a) Inherited correlation in crystal size distribution: Reply. Geology,
30, 283–284.

———(2002b) Inherited correlation in crystal size distribution: Reply. Geology,
30, 285–286.

Randolph, A.D. and Larson, M.A. (1971) Theory of Particulate Processes, 251 p.
Academic Press, New York.

Randolph, A.D. and Larson, M.A. (1988) Theory of Particulate Processes, 2nd ed,
369 p. Academic Press, New York.

Ristic, R.I., Sherwood, J.N., and Shripathi, T. (1997) The influence of tensile strain
on the growth of crystals of potash alum and sodium nitrate. Journal of Crystal
Growth, 179, 194–204.

Schaeben, H., van den Boogaart, K.G., Mock, A., and Breitkreuz, C. (2002) Inher-
ited correlation in crystal size distribution: Comment. Geology, 30, 282–283.
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