%(?H'
gec

The V C++ GUI Reference Manual

The V C++ GUI Reference Manual

Table of Contents

TheV REfErenCe IMANUAL..........coo ittt bt e et r e s b e n e n s 1
TheV View Of tNE WO,cooiiiiici et 4
GELEING SEAITOO. ..+ttt e et e b e bt b e Rt b et b et b st b bt ne bt s b e e b e r e nr s 11
[NEr OAUCEION £O DI BWING. 1. v.veueerereereeriesesresessese st ss et ss e s et et sb et s st se st as s ae b e e eb e nb et e b e st e e s e neen e e eb e r e nn s 17
VADD ot reeteeeeteeeeeeeeeeeseseeeeseses e eeseses e eeseees e se s e e e se et s et s eet e st ee e ee s ee st e s s et s et et ee s ee s ee s en e st een s eeneres 19
VADDWINTNEQ. ¢+ttt b bbbt e et e bt s b e b e e bt b et b et et nn bt nen s 29
VBASEGL CANVASPANE.ccereitiiriiiere sttt r e s b b e e r e sr e s ae e sn e n e s e nenresr e nnenre s 31
VBIUSI . h R R R R e Rt e h e R e bRt R R n s 39
VCANVASPANE.......cciviiriieiiiiri ettt e e r e e e e sE e e R e e e s r e s E e e R e e n e e R s Re e e e r e R e r e nr e nr e e renre s 42
VCANVASPANEDC ..ot n e re s 50
VCOMMEANUPEANE......c.cveuiteiireeiie ettt sttt b et r et se s s b e b et s e e ee e st ses e es e bt s e e R e s e b e e e b et b et ne e st et e bt s e b e e er e e nr s 51
1YL 1416 ATV T Ao o TSSO TSP PRSPPSO SPPP 53
1YL 0] [0 PSSP SO TSP TP SPPTST 56
LV 5 PP R O P TR PS PSPPI 61
VD EDUGDIAIOM « .+ euvvereeteaeeteesteeet ettt b e b e bbbt e st e bt e bt e b b e e R e e s st e Rt s bt e h e R e r et r et nene s 68
Y0 7= oo TP 71
VETLESEIOCL. ...ttt b bRt e b bR bt e R e R e R R Rt R bt e e n e nr s 78
LY 0] PP TP PR 81
VEONESEIOCE. ..ttt bbb bRt R R e h e R e R Rt R et et n s nen s 85
LY o0 PP PR 87
VIMEMOEYDIC...oeeie ittt st e e E e R s e e e e R e e R e e b e s R e R e e e e R sR e s ae e e e aR e e e e n e e r e n e re s 91
Y41/ T PP TP PR 92
VIM OUAIDIAIOM. « .- t-vvereeteaeeteesreeeses sttt s b e bbbt s et e st e e bt e b e e b e e b et b e bR e b n e e bt s b e e e b et b et b et n s e nene s 96

1VA N T o= T oo TSRS 99

The V C++ GUI Reference Manual

Table of Contents

LY 1 TP P PSP PTRPPRPRTOP 101
VPBNE ... e r e 103
LV < TSP P PO UPRUPRPPTO 105
VPEINEDC ..ottt e bbbt E e e Rt R et R R R b e b e e Rt e bt e R e bR n e r s 107
LY 1 TP PP 109
VREDIVDIAIOX. ..+ tuvveeeteeeteesteessee sttt s et se et b e b b et s et e bt e b st s bt s e st s b £ e b e e R e e b et e R et bt ne bt nr b e ener s 112
LY 1SS 114
YA 7= 11 3 TP P PR 117
VT EXECANVASPANE.c.eiiiiitiiiiiiiiri e e r e s r s esn e r e nr e e e r e nr e enen e 119
VA =1 =0 Lo TSSOSO TS TS OPPSPPRPIO 123
LV T PP P PSPPI 131
VWV EIOW: 1ttt b e b bR Rt R R s e b e e bt e e b et e b et bt e et r e n e s 133
RV T Y= 4 oo £SO 139
VY INREDIVDIAIOQ. .. eeeevereeeeeeneriesiesieseeeesessessesee e e ssessesseseesessestesseneesessessessenseseesessessesssnsesessessensensenessessessensens 141
CIMAALIEIDULE ...ttt e bt e bt e b e b e e et r et n e nn b e 143
COMMANAODIECL. ...ttt h bbbt ne et r bt es bt e b e e b e e bt n e nr e anas 145
CommandObject COMMEANTS.......c.uireuerrerirreierieree ettt e bt b e b sesr st ss b seebe e e s e b e anas 149
SHANAAIA V VAIUEScceiiiiieteeiee sttt h e bbbt b et s e bt en bt e b e e n e b anas 165
SYMBDOLIC K BY COUBS......eeueeiirteiiieitre ettt e bbbt e et s et es bt e b e b e b et n e nn e anas 169
MISCEIANEOUS ULITIEEScveueeeiieeeitetee ettt et e 170
V ADDIICALION GONEIAEOL. .. .veueveuereeiirreiireeie sttt ettt sb et r et se s e b e et et b e st ne st s bt e e b e b e e b e e n e nn e s 171
RV Koo I = 1L (o TSSOSO PSP O PTUPPUPTRP 174
AV T PP P PP UPRUPRUPRPPOPN 181

The V C++ GUI Reference Manual

Table of Contents

N ClASS HIEBI AT CNY. ..ttt h bbb bt e bt e bt e bt bt b et et nn b nn b s 189
PLALFOI N INOEES. .ttt h bbbt bbbt ee bt e b e s b e e b e enas 191
General INStallation NOLES.......c.coveuirrrrererieirreirre ettt e st e b e e b e e e b e e b e nr et nesenn s e 196
Thel atest Version: WHat's NEW?Z......ucuireirieireeeeiesesiee ettt nn e 211

The V Reference Manual

by
Bruce E. Wampler, Ph.D.

%@H
gee

Thisisthe printable version of the V Reference Manual. While the complete V Documentation is best viewed
using a broswer for the HTML version, this printable version is the result of alarge number of requests.

This printable version is a PDF file automatically generated by the program HTMLDOC (available as
freeware under the GPL). Because the original V HTML version was not designed to convert directly to a
printed book, this printable version may not be optimal. However, HTMLDOC is an excellent program, and
this PDF version should meet the needs of those wanting a hard copy version.

What is V?

V isa C++ Graphical User Interface Framework designed to provide an easy to use and program system for
building GUI applications. The framework is small, elegant, and provides the tools required for building all
but the most specialized applications.

The V framework has also been designed to be portable. Currently, versions for the X Windowing System
(using a customized 3D Athena widget set), Microsoft Windows 3.1, and Microsoft WIN32 (Windows 95
and NT) areavailable. A version for OS/2 isaso available. A gtk version for X is aso under development.
TheV system isfregly available for use by anyone under the terms of the GNU Library Genera Public
License.

Why did | write V, and why did | put it under the GNU license? | have been programming for over 20 years
now, and building interactive applications for most of that time. During that time, | got tired of complicated,
difficult to learn and use libraries for building interfaces, and wanted something easier.

I've also been successful in the software business, having founded two different software companies, Aspen
Software and Reference Software International. | was the principle designer and author of the widely known
and used grammar checker, Grammatik 1. Basically, | see V as something of apublic service; away to give
something back to the software industry that has been good to me. The concept of a portable GUI library is
not original, but | think some of the design goals of V are significantly different than other similar libraries
I've seen.

» The main design goal isfor for V is ease of programming. | don't think that building the GUI part of
an application should be the hardest part of the job asit iswith most native GUI toolkits. V is small,
easy to learn, easy to use, and provides the essentials of a good graphical user interface.

The V Reference Manual 1

The V C++ GUI Reference Manual

| have some evidence that | have succeeded in this goal. V has been used for several semesters for
large team projectsin the software engineering class | taught at the University of New Mexico. While
| get many questions from my students related to the projects they are doing, | got virtually no
guestions about using V itself. The small number of questions about V has been both startling and
rewarding, and is good evidence that this design goal has been met. V has also been used successfully
for aJunior level programming class. Previoudly, the high overhead of learning to write applications
for X has prevented the students from writing small programs with interesting user interfaces. The
simplicity of V has allowed them to do this for the first time.

* V isdesigned to be portable. Over the years, I've programmed on awide variety of interactive
platforms. The main GUI platforms widely used today include the X Window System, Microsoft
Windows (3.1, 95, and NT), 0S/2, and the Macintosh. V has been designed to work on all those
platforms, and present alook and feel that is consistent with native applications.

 Visnot too big. It has less than 15 C++ classes that you will have to interact with. Thisis unlike
many other frameworks that provide dozens and dozens of classes that you must learn and
understand. The V framework only supports GUIs. It does not have templates, containers, and
bunches of other C++ classes. If you need agood list class, use your favorite one from another class
library. Use V for your interface.

* V has very good associated documentation. It islikely that part of the reason that V is easy to useis
that it is accompanied by a better than average programming manual. I've tried to not only give a
useful explanation of each V class and function, but to accompany each description with a short
example that shows how to use the V feature in a useful way. There are also several examples
provided with the V distribution to help you get started with abasic V application.

 Visan aternative for building compiled GUI applications. While interpretive solutions such as
Tk/Tcl for building GUI applications are becoming popular, they don't allow fully compiled code on
multiple platforms. As machines get faster and faster, | don't think the advantage of an edit/interpret
cycle versus an edit/compile/run cycle is significant.

TheV library isfree software; you can redistribute it and/or modify it under the terms of the GNU
Library General Public License as published by the Free Software Foundation; either version 2 of the
License, or any later version.

V isdistributed in the hope that it will be useful, but without any warranty; without even the implied
warranty of merchantability or fitness for a particular purpose. Seethe GNU Library General Public
License for more details. (Note: that isadirect link to the GNU web page. If you are viewing this
manual off-line, don't click there now.)

 The source code for V is of commercial quality, and | hope some of the easiest to read and
understand code you will ever encounter (if you decide to look at the V source code).

Thereis, of course, a priceto pay for the ease of programming with V. The main constraint is that you are
somewhat restricted to following V's (and thus my own) view of the world. The V model does not exactly
conform to the native models of X, Windows, and the Mac, but it is avery good compromise. For the most
part applications devel oped with V will in fact conform to the host look and feel, but may be lacking some of
the bells and whistles of the most sophisticated commercial applications available for a given platform. For
the vast magjority of applications, thiswill not matter. Y ou will end up with applications that look pretty good,
and are likely to have a much cleaner and better interface than they would have otherwise.

The V Reference Manual 2

http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html

The V C++ GUI Reference Manual

If you are a C programmer, then the fact V is a C++ library might be a problem. Whileitisafully
object-oriented C++ framework, it can be used with C code if you know a bit about C++. Also, V does not
allow you to do everything you could if you programmed in the native windowing library. Y ou won't have
every single conceivable control, and some controls are dightly restricted in how you can use them.

And finally, why the name V? First of al, it isasimple name. It follows the tradition of C and X. It makes
naming the classes easier. And, my son's name is Van, which startswithaV. So Vit is.

This user guide and reference manual, The V C++ GUI Framework User Guide and Reference Manual, Version 1.21, may be
reproduced and distributed, in whole or in part, subject to the following conditions:

1. The copyright notice above and this permission notice must be preserved complete on all complete or partial copies.

2. You may not translate or create a derivative of thiswork without the author's written permission.

3. If you distribute this manual in part, you must provide instructions and a means for obtaining a complete version.

4. Y ou may make a profit on copies of thiswork only if it isincluded as part of an electronic distribution of other free
software works (e.g., Linux or GNU).

5. Small portions may be reproduced asiillustrations for reviews or quotations in other works without this permission notice
if proper citation is given.

My goal isto get as many people as can be helped using V. If the terms of this documentation copyright are
unsatisfactory, please contact me and we can probably work something out.

A gzipped tar file of the full V reference manual is available at

ftp://www.objectcentral.com/vrefman.121.tar.gz for the HTML version,
or ftp://www.objectcentral.com/vrefman121.pdf for the PDF version.

V User Guide and Reference Manual - Version 1.21 - 2/28/99
Copyright © 1998-1999, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler

521 Springridge Dr.
Glenwood Springs, CO 81601
bruce@obj ectcentral.com

www.objectcentral.com

Footnotes:

1 Grammatik is atrademark of Novell, Inc.

The V Reference Manual

ftp://www.objectcentral.com/vrefman.121.tar.gz
ftp://www.objectcentral.com/vrefman.pdf
mailto:bruce@objectcentral.com
http://www.objectcentral.com

The V View of the World

Before getting into the details of V, you might find it useful to read this overview of how the V view of the
world was developed. If you are new at writing GUI applications, you should find this page especially useful.

A Generalized GUI Model

If you examine alarge number of applications available on the magjor GUI platforms, you will find the
interfaces typically have agreat deal in common. While the visual details may differ, most applications have
windows that show views of the data being manipulated, and use menus and dialogs for control interaction
with the user. The user interacts with the program using a pointing device, usually a mouse, and the
keyboard.

Windows

{1y Prototype V Example
3 File Edit Test (3)

@ Checkhe
Copy Sensitive @
Dialog

Modal Dialog
{6} {5

{5

| Copy HDie.log H TestButton HClearH Ext |{?)

Corumands issued: Last keypress: &)

Figure 1: Thistop level consists of: (1) Thetitle bar. (2) The close button. (3) The menu bar. (4) A pulldown
menu. (5) Vertical and horizontal scroll bars. (6) The drawing canvas. (7) The command bar. (8) The status
bar.

The window is usually the main interface object used by an application. The data being manipulated by the
user (e.g., text, graphics, spreadsheet cells) is displayed in the window. Often, several windows may be open
a the same time, each giving adifferent view of the data. There is usually a menu associated with the
window for entering commands to manipulate data or to bring up dialogs.

The top level interface object used by V is a Command Window. Each command window consists of a menu

The V View of the World 4

The V C++ GUI Reference Manual

bar, placed at the top of the window; a canvas area, used to draw text and graphics to display the data; and
optional command bars, which include commands buttons and objects; and optional status bars to display
state information.

Figure 1 represents, more or less, atypical top-level V window.

Dialog Boxes

Sample Modeless Dialog (1)

CheckBox (o) Radios Buttons (4)

O TestA [TestE || @ KCB
[TestC OKOAT
| OKRQE

{5 {6)
|ToggleSensitive| |ChangeMeA| |Cancel| “OK H

Figure 2: Thisdialog consists of: (1) Dialog label. (2) Three check boxesin aframe. (3) Three radio buttons
in aframe. (4) Three buttonsin aframe. (5) Four buttons, including (6) the default OKbutton.

Much control interaction with Vapplications takes place through one of two dialog objects: modal and
modeless dialogs. In amodal dialog, interaction with any other window or dialog is locked out until the user
interacts with it. In amodeless dialog, the user can continue to interact with other parts of the application
while the dialog remains displayed. Modal dialogs will go away once the user enters a command. Modeless
dialogs may or may not go away, depending on their purpose.

V supports a comprehensive set of controls for dialogs. These include command buttons, text labels, text
input, list selection boxes, combo boxes, radio buttons, check boxes, spinners for value entry, diders, and
progress bars. These controls may be grouped into boxes. Layout of controlsin adialog is defined in the
dialog definition list in the source code. Controls may be used in window command bars as well as dia ogs.

Figure 2 represents, more or less, atypical V diaog.

Events

The structure of the code for user command processing in GUI applicationsis quite different from traditional
C programs. The user input control model of traditional C programsis rather smple, usually using

printf and get c or some variant for interaction. Logically, the program reaches a point where it needs input,
and then waits for that input.

GUI applications deal with user input much differently. Interaction with an application from the user's

The V View of the World 5

The V C++ GUI Reference Manual

viewpoint consists of a series of mouse movements and clicks, and text and command input through the
keyboard. From the programmer's viewpoint, each of these is an event. The important thing about an event is
that it can occur at any time, and the program cannot simply stop and wait for the event to happen.

Interaction with an application by the user can generate several different kinds of events. Consider mouse
events. If the mouse isin the drawing area, each movement generates a mouse movement event. If the user
clicks a mouse button, a mouse button event is generated. A keystroke from the keyboard will generate a
keyboard event.

If the mouse pointer isin adialog, or over amenu or command button, then movement events are not
generated. Instead, button clicks generate command events.

Sometimes an application needs to track the passage of time. The application can call a system function that
will generate atimer event at agiven interval.

In aGUI environment, windows are usually not displayed alone. Often, other applications are running, each
with its own windows. The host windowing system typically displays windows with various decorations that
let the user manipulate the windows. Sometimes, these manipulations will generate events that require a
response from the application code. For example, the user can use the mouse to change the size of awindow
causing aresize event. When multiple windows are displayed, some can be completely or partially covered
by other windows. If the user moves awindow so that a different part of the window is displayed, then an
expose event is generated, which requires the program to redraw part of the canvas area.

All these events require aresponse from the application - to carry out the command, to draw something in the
canvas area, or to redraw the canvas after aresize or expose event. Some events, however, are handled by the
system, and not the application. Thisincludes drawing menus and handling dialogs. For example, when a
dialog is displayed, the system tracks mouse movements within the dialog, and handles redrawing the dialog
for expose events. In general, the application is responsible for resize and expose events only for the canvas
area.

All these events are asynchronous, and the application must be able to respond immediately to any of these
events. Traditionally, handling events has been rather complicated. For each possible event, the program
registers an event handler with the system. Then, the program runsin an event loop. The event loop receives
an event, and then calls afunction to dispatch the event to the proper event handler.

C++ makes dealing with events much easier. Each event can be considered a message, and the message is
central to object-oriented programming. In V, each object, such as a command window, has methods! that the
system sends event messages to. For example, there is aw ndowConmand method that responds to command
events from the system. The application overrides the default V W ndowConmand method to handle commands
as needed by the application. All the details of the event loop and event handlers are hidden in the

V implementation. If you have ever programmed with event handlers and loops, you will find the simplicity
of overriding default methods incredibly easy in comparison!

Easy to program

One of the main goals of the design of V wasto make it easy to use to write real programs. Some of the
factorsthat help V meet this goal are described in the following sections.

The V View of the World 6

The V C++ GUI Reference Manual

Hide the dirty details

One of the problems with using most native GUI libraries such as Xt or Windows is the huge amount of
overhead and detail required to perform even the simplest tasks. You are typically coding at avery low level.
While part of this complexity may be necessary to allow total flexibility in what you can do, the vast mgjority
of applications just do not need total flexibility. V was designed to hide most of the details of the underlying
GUI library. Things such aslibrary initialization, specific window handles, and calls required to build low
level controls are all hidden. Instead, you work at the much higher level of objects needed to build atypical
GULI.

Easy to define GUI objects

It has always seemed to me that a GUI abject such as a menu could most simply be thought of asasingle
object consisting of alist of items on that menu with their associated attributes. Rather than requiring a set of
complicated callsto build that menu list, in V you can simply define amenu as a static C++ struct array - a
list in other words. The same appliesto dialogs. A dialog isalist of control objects with associated attributes,
including how the controls are positioned in the dialog. This philosophy leads to very easy to maintain code.
Menu and dialog lists are well defined in asingle place in your code, and it is very easy to modify and change
the list definitions. Actions for each menu or dialog command are defined in a single C++ method that
responds to command events.

No resource editors

One data object used by most, but not al, native GUI librariesiswhat is usually called aresourcefile. A
resource file is most often used to specify layout of dialogs and menus. One reason resource files are used is
that specifying the layout of dialogs and menus directly in the code is often very difficult for the native
libraries.

The combination of the way V lets you specify menus and dialogs, and the way C++ makes responding to
event messages so easy has really removed the need for resource files. Thisin turn eliminates one of the more
complicated aspects of portability across platforms.

Look and Feel

One of the limitations of V isthat it hasits own look and feel. While this may be alimitation, it is not
necessarily bad. First, the look and fedl is constrained so that applications will be portable across platforms
and look like native applications on each platform. This means some things that are possible on one GUI
platform, but not another, are not included in V.

V also incorporates much of my own experience. | really like simplicity, and believe that just because you
can do something, it is not necessarily agood ideato do so. Thus, for example, there are limitations on the
number of menu items per menu, and how deeply you can nest pull down menus. These limitsin fact help
enforce good interface design.

The V View of the World 7

The V C++ GUI Reference Manual

Good Example of OO

While V has been designed to develop real and useful GUI applications, it also has been designed to be useful
in alearning environment. Thus, V represents a good example of object-oriented design.

GUI systems are a natural for object orientation (OO). It is easy to understand the nature of each object - a
window, adialog, acommand button, a menu bar, a canvas, and so on. Inheritance and aggregation of these
objectsis also very natural. Events are messages, and sending messages to methods is pure OO.

Since V islicensed under the terms of the GNU Library General Public License, the source code will always
be available for study. It was written using the guidelines of Appendix B, and is very readable and easy to
understand. Not only isthe V source code a good example of OO programming, you may also find it
interesting if you want to learn things about how the underlying GUI toolkits work. While good examples of
freeware X source code are readily available, good examples of non-trivial Windows source code are nearly
impossible to come by. | hope the V Windows source code will help fill thisvoid.

The V Object Hierarchy

This manual contains several object hierarchy diagrams of the V framework, and of V applications. There are
many graphical notations in varying degrees of widespread use, but | have found the Coad-Y ourdon2 notation
one of the easiest to learn and simplest to use. The basic graphical elements of the notation are shown in
Figure 3.

frm— frm—
Class natne Class with Class atne Class with
attributes 0o instances attributes instances of
raethods of objects raethods objects

(Has 1 to I objects)

1N
CF inheritance {is-a) 4 aggregation {has-a)
1N

(Part Of 1 to N objects)

Figure 3: Coad-Y ourdon OO Notation

An object is shown in arectangular box. A single border indicates a generalized base class that will not have
any instances, while a double border indicates that the named object can have instances.
Generalization/specialization (inheritance, or is-a) relationships are shown with half circles. Whole/part
(aggregation, or has-a) relationships are shown with triangles 3.

The ""1,N" notation at the top of the aggregation triangle indicates that the object above can contain from 1
to N instances of the object below. The lower “"1,N" indicates the lower object can be apart of 1to N
objects. The values can be changed to reflect reality. Thus, it iscommon to have “"1,N" at the top, indicating
that an object may contain many instances of the lower object, and just a™"1" for the lower value, indication

The V View of the World 8

The V C++ GUI Reference Manual

that an object is a part of exactly one of the upper objects.

When discussing adesign at a high level, the attributes and methods boxes are often | eft blank. This leads to
hierarchies such as the one for V in Figure 4 that shows the programming view of the V framework. In this
case, there are no generalized base objects, and most of the relationships are whol e/part.

Q = inheritance

I\ = aggregation

{* vCanvasPane |

Figure 4. Programming View of V Classes

Figure 4 reveals some interesting things about V's ook and feel. Note that avApp classhas1to N
vCmdW ndows, indicating that there will be at least one window. Each window, in turn, has exactly one menu
and canvas, but zero to many command panes, status panes, and dial ogs.

The version of the V hierarchy in the Appendix shows an implementation view of the hierarchy. Some of the
classes that are never seen or used by the programmer are shown in that hierarchy.

Footnotes:

1] use the general object-oriented term method to refer to what are called member functionsin C++
terminology.

The V View of the World

The V C++ GUI Reference Manual

2 Peter Coad and Edward Y ourdon, Object-Oriented Analysis, 2nd ed. (Y ourdon Press/Prentice Hall, 1990);
and Edward Y ourdon, Object-Oriented System Design, An Integrated Approach (Y ourdon Press/Prentice
Hall, 1994, ISBN 0-13-636325-3).

3 Hint: It is sometimes hard to remember which shapeiswhich. A triangle looks like a capital letter A asin
Aggregation. The half circle shape is then inheritance.

The V View of the World

10

Getting Started

This chapter isintended to cover the elements that make up a 'V application. The first section coversthe
general organization of a " Standard VV Application". Read this section to get an overview of aV application.
Don't worry about the details yet - just the the main idea. Then read Section Tutorial Example and the
Tutorial Code, which has the source code of a small, complete V application, to get the details.

Getting Started with Your Own V Application

Aswith any new system, V has alearning curve before you can write applications of your own. V'slearning
curveisactualy pretty short. The experience of the students using V has shown the best way to get started
with V isto first read the first part of this reference manual, including this chapter. Then begin with an
example V application.

The V application generator, vgen, included with the V distribution is the easiest way to begin building a

V application. Run vgen, select the basic options you want to include in your application, select the directory
to save the generated code in, and then generate the basic skeleton application. From the skeleton app, it is
relatively easy to add your own functionality.

Thetutorial application described in this pageis aso an excellent V example. Start by getting the example to
compile. Then modify the code to add or remove features. Before long, you will have agood feel for V, and
be able to add all the features you need.

There are several other example programs provided with the V distribution. This tutorial isfound in

~/ v/ tut or. The VDraw program isfound in ~/ v/ dr aw. The program used to test all V functionality isfound
in~/ v/ test.Itwill have an example of how to use every V feature, although it is not as well structured as
the other examples.

A Standard V Application

While the V framework is flexible enough to allow many different approaches to building an application, you
should find it easier to base your applications on amodel Sandard V Application. The software organization
described by a Standard V Application can support MV C (Model-View-Controller) object-oriented
architecture paradigm.

Figure 1 shows the hierarchy of a standard V application. A standard V application consists of the parts
described below. Each part consists of apair of . cpp (or . cxx) and . h files (except the makefi | e).

Getting Started 11

tutcode.htm
tutcode.htm

The V C++ GUI Reference Manual

——————
oy App
A Standard IO = Aggregration
V Applicaton (has)
e
1N N\ 1N 1
1 1 1
toor A ppSiFininfo { oy CrodWindow | { oy ppModel)
\) \ \

TTTT1
1 1 0N 0N
1 1 1 1

" wMerwPane] || {royCanvasPane)| |{vCorarcandPane)| |{ +StatusPane

reyDialog

Figure 1: Standard V Application

The Application

In many ways, the heart of a Standard VV Application is the application class derived from the
vApp class. By convention, this derived classis called myApp (but you can use a different
name if you want.) There will always be exactly one instance of the nyApp class. The

my App class acts as a coordinator between the windows that implement the user interface (the
views) and the objects and algorithms that actually make up the application (the model). The
my App class will contain in awhole/part (or aggregation) relationship the windows defined by
the application, as well as any classes needed to implement the application.

The vApp class has several utility methods that are usually used unmodified, plus several
methods that are usually overridden by the ny App class. These are described in the section
covering vApp. In addition, your myApp class will usually have several other programmer
defined methods used to interface the command windows with the application model.

Windows and Canvases

Each Standard V Application will have at least one top level window, and possible
subwindows. These will usually be command windows derived from the vCndW ndow class.
Y our main derived class should be called ny CndW ndow, and include a constructor that
defines amenu bar, a canvas, and possible command and status bars. Of course, there will be
a corresponding destructor. The . cpp file will contain the static definitions of the menu and

Getting Started 12

vapp.htm
vcmdwin.htm

The V C++ GUI Reference Manual

any command and status bars. It will aso override the W ndowCormand method of

vCmdW ndow superclass. In your W ndowConmmand method, you will have aswi t ch with a
case for each menu item and button defined for the window.

Since avomdwW ndow contains different panes such asvyMenus, vCanvasPanes,
vConmandPanes, and vSt at usPanes, your top level command window object will usually
define the appropriate pointersto each of these objects as required by the specific
application. The my amdwW ndow constructor will then have anew for each pane used.

Each instance of awindow will be built using acall to the vApp: : NewAppW n method. This
allows the app object to track windows, and control interaction between the app model and
the views represented by each window.

Some applications need to open subwindows. These windows may or may not use the same
menu, command bar, and canvas as the top level window. If they do, then they can use the
same static definitions used by the top level window. Subwindows may also have their own
menu, button, and canvas definitions.

Canvases for Windows

Since each window usually needs a canvas, you will usually derive a canvas object from the
vCanvasPane class. At thispoint in the life of V, there are only two possible kinds of canvas.
Thefirst isfor graphics drawing, and is derived directly from the vCanvasPane class. The
other kind is atext canvas derived from the vText CanvasPane class. The derived class will
define override methods required for the user to interact with the canvas.

Optional Dialogs

Most applications will need dialogs - either modeless or modal. A Standard V dialog consists
of a. cpp file with the static definition of the dialog commands, and the definitions of
methods derived from the vDi al og class. These will include a constructor and destructor, and
aDi al ogCommand override with aswi t ch with acase for each command defined for the
dialog. Each case will have the code required to carry out useful work.

Thetop level window (or the subwindow that defines and uses the dialog) will create an
instance of each dialog it needs (vianew). The constructor for the dialog sets up the
commands used for the dialog.

Typicaly, the top level window defines menu and button commands that result in the
creation of adialog. The top level window isthus usually responsible for invoking dialogs.

Optional Modal Dialogs

Modal dialogs are almost identical to modeless dialogs. The main difference is how the
dialog isinvoked from the defining window.

Menu, Command and Status Bars
By definition, the look and feel of aV application requires a menu bar on the command
window. A V application also typically has acommand bar and a status bar, but these are not
required.

The Application Model

Each application will need code to implement its data structures and algorithms. The design
of the application model is beyond the scope of V, but will usualy be defined as arelatively

Getting Started 13

vmenu.htm
vcanvas.htm
vcmdpane.htm
vstatus.htm
vdialog.htm

The V C++ GUI Reference Manual

independent hierarchy contained by the myApp object. Interaction between the application
model and the various views represented by my GrdW ndows can be coordinated with the
my AppW nl nf o class.

The Makefile

Each V Standard Application should have an associated nmakef i | e that can be used to
compile and link the application.

Please note that while V is object-oriented, the objects represent real screen windows. Thus, it makes no
sense for most V objects to support copy constructors or object assignment. If you use one of these V objects
in away requiring a copy constructor or an assignment (fortunately, it is difficult to contrive such an
example), the code will generate arun time error.

Special V Applications

Windows MDI/SDI

The standard V application includes a command window with a menu, a command bar, a canvas, and a status
bar. While this model suits most applications, there are some special cases that V supports.

First, on Windows, V supports the standard Windows M DI model (Multiple Document Interface) by default.
The MDI model consists of a parent window that can contain several children canvases, each with a different
menu that changes in the main parent window when a child gets focus. In practice, the menus are usualy the
same for al children windows, and each window is used to hold a new document or data object. One of the
main advantages of the MDI model is that each application has a main window to distinguish it from other
Windows applications, and as many child windows as it needs to manipulate its data.

On X versions, there isno need for aspecia parent window. Each time you open a new command window,
you get a new window on the X display.

The Windows MDI model forces some screen decorations that are not appropriate for all applications. Thus,
V aso supports the standard Windows SDI model. The SDI model allows only one canvas/command window
combination. There is a parameter to the vApp constructor that tells V to use the SDI model. This parameter is
not used on the X version.

Canvasless, menuless V Application

Sometimes an application needs just acommand bar with no menu or canvas. By setting the

si nsDl parameter to 1, and supplying awidth and height value to the vApp constructor, V alows thiskind of
simple interface. Instead of adding a menu and a canvas as is done for normal V apps, a menuless and
canvasless app just defines a command pane for the command bar. The height and width are used to specify
the height and width of the application, and require different values for Windows or X.

Getting Started 14

The V C++ GUI Reference Manual
A Tutorial Example V Application

Now that you've read about the parts of a standard V application, it might be useful to go over asimple
example of aV application. Appendix A contains the source code for asimple V application. The codeis
tutorial, and well commented. Y ou can read the code directly and get a good understanding of what elements
are required for aV application. This section will give a higher level overview of the code in the tutorial
source.

Y ou should read this code, paying special attention to the comments. Most of the information you need to
build atypical V application is explained in this code. This sample code is also available on line under the
~/ v/ t ut or directory. The source code of adlightly different standard V application isincluded the ~

/ vl exanp directory of the V distribution.

The previous section suggested using nyApp for names. Thistutorial usesat prefix instead of ny. You really
can use whatever names you want. It will help to be consistent, however.

The code is broken down into five sections, corresponding to the main application, the main window, a
simple canvas, and modal and modeless dialogs. The source code for each of these partsisincluded in
Appendix A. The source code is extensively commented, and the comments contain much detail on how you
should structure aV application, so please read them carefully. The following sections give a brief overview
of each source file included in the tutorial example.

The Base Application Class

Thefilet ut app. cpp contains the overridden definitions of the classes NewAppW n, Exi t , Cl oseAppW n,
AppConmand, and Keyl n methods. These examples don't do much work, but are provided as atemplate for
building complete applications.

The single definition of the application (st at i ct ut Appt ut _App(" Tut or App") , and the AppMai n main
program are also in thisfile. Theinitial window is created in AppMai n by calling NewAppW n.

One thing that can be difficult to grasp when using a framework such as V is understanding where the
program starts, and how you get things rolling. This happensint ut app. cpp, Soit is especially important to
understand this piece of code. The essentia thing to understand is that C++ will invoke the constructors of
static objects before beginning execution of the program proper. Thus, you declare a static instance of the
vApp object, and its constructor is used to initialize the native GUI library and get things going. Y our
program will not have amai n function (see AppMai n in the description of the vApp class for more details).

Aswith al filesin thetutorial, each hasa. cpp sourcefile, and its associated . h header file. All V code has

been written using the coding guidelines given in Appendix B. Thisincludes the order of the declarations
included in header files.

The Command Window

Thefilet cndwi n. cpp contains the code for the main command window. Of particular interest are the
definitions of the main menu, command pane, and status pane. These panes are defined and added to the

Getting Started 15

tutcode.htm
tutcode.htm

The V C++ GUI Reference Manual

window in the constructor.
There is also code to demonstrate handling keyboard and window command events in the Keyl n and

W ndowConmand methods. There is also asimple example of using the vFi | eSel ect utility class, aswell as
invoking modeless and modal dialogs.

The Canvas
Thefilet canvas. cpp contains the code for the canvas. Thisisareally simple canvas example which

supports drawing afew lines. This class handles redrawing after expose events very simply, but demonstrates
what must be done in general.

A Modeless Dialog

Thefilet di al og. cpp contains the code for amodeless dialog. There are just afew example buttons, check
boxes, and radio buttons. The Di al ogCommand methods demonstrates how to handle commands from a
diaog.

A Modal Dialog

Thefilet nodal . cpp contains the code for amodal dialog. The definition of amodal dialog is nearly identical
to amodeless dialog. The main difference is how they areinvoked, which is shown in thet cndwi n. cpp code.

The Makefile

Thefile makef i | e contains a sample Unix-style makefile. This version isfor Gnu make, which has features
different than some other flavors of make. It should still serve as a decent example.

Getting Started 16

Introduction to Drawing

The basic V model of drawing isa canvas. V supports several kinds of drawing canvases. The most obvious
canvas is the screen drawing canvas. Thiswill often be the main or even only canvas you use. V also supports
printing canvases. Each kind of canvas hasidentical drawing methods, so you can write code to draw that is
mostly independent of which kind of canvasis being used.

There is also a specialized drawing canvas to support OpenGL. This class differs somewhat from the other
drawing canvases.

Drawing with the vDC Class

Y ou draw to the various canvases using a vDC class, the general V Drawing Canvas Class (the OpenGL
canvas does not use the vDC class). The vDC class for drawing to the screen isyCanvasPaneDC. The class
vPri nt DCisthe platform independent class to draw to a printer. For X, vPri nt DC supports PostScript
printing. The Windows version supports standard Windows printers. (Y ou can also use the PostScript DC
independently on Windows.) If you write your drawing code to use avDC pointer, you will be able to draw to
several canvases just by changing the value of the pointer.

Each vDC supports the methods described in the vDC section. Because the vCanvasPane classis so central to
most applications, it duplicates all the vDC methods so you can call them directly from your

vCanvasPane object. In fact, all the methodsin vCanvasPane are just callsto the corresponding vDC using
the vCanvasPaneDC of the canvas pane. Y ou can get the vCanvasPaneDC pointer with the Get DC method.

There are three kinds of drawing methods supported by V. The simplest methods draw lines of various widths
and colors using the current vPen. Y ou change the color and width of the lines being drawn by setting the
current vPen with the Set Pen method.

The second type of drawing includes filling the space surrounded by a shape such as a polygon. The edges of
the shape are drawn using the current vPen. Thefilled areais drawn using the current vBr ush. Y ou can set
various attributes of the brush, and use Set Br ush to change how the shapes will befilled, as well as changing
the attributes of the vPen used to draw the surrounding line. Both the pen and the brush can be transparent,
allowing you to draw unfilled outline shaped, or to fill a shape without an outline.

Finally, V supports drawing of text on a canvas using various yFont s and text attributes. The canvas pane
will start out using the default system font (vf Syst enDef aul t). If you need adifferent initial font, use
vFont : : Set Font Val ues to select the font you want, then vCanvasPane: : Set Font to set the new font.

Coordinates

All V drawing canvas classes use integer physical coordinates appropriate to the canvas. All devices call the
upper left corner x,y coordinate of the drawing canvas 0,0. The x values increase to the right, and y values
increase down.

It it up to each application to provide appropriate mapping from the coordinates used for the particular model
being used (often called the world coordinate system) to the physical mapping used by each V drawing

Introduction to Drawing 17

vdc.htm
vcpdc.htm
vprintdc.htm
vpen.htm
vfont.htm

The V C++ GUI Reference Manual

canvas. Each drawing canvas will have a physical limit for the maximum x and maximum y, usually imposed
by the particular canvas (a screen or a paper size, for example). Y ou can set a scale factor for each drawing
canvas which can be helpful for using different kinds of drawing canvases. V aso supports setting an x,y
tranglation. Thiswill alow you to more easily use the scroll bars and set margins on printers. Y our
application can usually use the messages received from the scroll bars to set the translation coordinates to
map your the canvas to a different drawing area. The system will handle clipping.

However, the application is for the most part responsible for determining all coordinate mapping -
tranglations of a viewport of the drawing, determining the scaling for various drawing canvases, and any

mapping from the world to the physical coordinates. The application will have to map the mouse input
accordingly, too.

See Also

vCanvasPaneDC, vMenor yDC, and vPr i nt DC.

Introduction to Drawing 18

vcpdc.htm
vmemdc.htm
vprintdc.htm

VApp

The base class for building applications.

Synopsis
Header:
<v/vapp. h>
Class name:
VApp
Contains:

vCmdWindow, vAppWinlnfo

Description

The vApp class serves as the base class for building applications. There must be exactly one instance of an
object derived from the vApp class. The base class contains and hides the code for interacting with the host
windowing system, and serves to simplify using the windowing system.

Y ou will usually derive a class based on vApp that will serve as the main control center of the application, as
well as containing the window objects needed for the user interface. The single instance of the application
classis defined in the body of the derived application class code.

The vApp class has severa utility methods of general usefulness, aswell as several methods that are normally
overridden to provide the control interface from the application to the command windows. The derived class
will also usually have other methods used to interface with the application.

In order to simplify the control interface between the application and the windows, the vAppW nl nf o class
has been provided. The application can extend that class to keep track of relevant information for each
window. When the NewAppW n method is used to create a window, it will create an appropriate instance of a
vAppW nl nf o object, and return a pointer to the new object. The base vApp then provides the method

get AppW nl nf o to retrieve the information associated with a given window.

Constructor

VAppP 19

vcmdwin.htm
vawinfo.htm

The V C++ GUI Reference Manual

vApp(char* appName)

vApp(char* appName, simSDI =0, int fh =0, int fw = 0)

appName Default name for the application. This name will be used by default when names are not provided
for windows. The name also appears on the “main window" for some platforms, including Microsoft
Windows, but not X. The constructor also initializes some internal state information. There must be exactly
one instance of the vApp object, and will usually represent your derived ny App object. See the code below
with AppMai n for an example of creating the single app instance.

simSDI This optional parameter is used to specify that Vshould start as a Windows SDI application if it is set
to 1. This parameter has no effect for the X version.

fw, fh These are used to specify the size of amenuless and canvasless Vapplication, and are optional.

Methods to Override

void AppCommand(vWindow* win, ItemVal val)

Any window commands not processed by the vW ndow object are passed to AppConmand. Y ou can override
this method to handle any commands not processed in windows.

int AppMain(int argc, char** argv)

Thisisaglobal function (not a class member!) that is called once by the system at start up time with the
standard command line arguments ar gc and ar gv. You provide this function in your code.

Y our program will not have a C mai n function. The main reason for thisis portability. While you would
usually have amai n in aUnix based program, MS-Windows does not use nai n, but rather PASCAL W nMai n.
By handling how the program gets started and providing the AppMai n mechanism, V allows you to ignore the
differences. You will still have all the capability to access the command line arguments and do whatever else
you would do in mai n without having to know about getting the host windowing system up and running.

The windowing system will have been initialized before AppMai n is called. Y ou can process the command
line arguments, and perform other required initializations. The top level command window should also
created in AppMai n by calling NewAppW n.

Before AppMai n iscalled, the single instance of your derived vApp object must also be constructed, usually by
instantiating a static instance with a statement such asst ati ¢ nyApp* MyApp = new myApp(" Pr ot oApp") .
As part of the construction of the myApp object, the global pointer vApp* t heApp isaso pointed to the single
instance of the vApp or derived nyApp object. You can then uset heApp anywhere in your code to access
methods provided by the vApp class.

Y our AppMai n should return a0 if it was successful. A nonzero return value will cause the V system to
terminate with an exit code corresponding to the value you returned.

VAppP 20

vwindow.htm

The V C++ GUI Reference Manual

Example

/1 EVERY V application needs the equivalent of the follow ng line

static nyApp nyApp("My V App"); // Construct the app.

/1 62; 62; 62; AppMain <<
int AppMain(int argc, char** argv)
{

/1 Use AppMain to perform special app initialization, and

/Il to create the main window. This exanple assunes that
/1 NewAppW n knows how to create the proper w ndow.

(voi d) theApp-62; NewAppWn(0, "My V App", 350, 100, 0);

return O;

int CloseAppWin(vWindow* win)

Thisisthe normal way to close awindow. Your derived d oseAppW n should first handle all housekeeping
details, such as saving the contents of afile, and then call the default vApp: : d oseAppW n method. Y our
code can abort the close process by not calling the default vApp: : d oseAppwi n class, and instead returning a
0. When you call the default method, the window's d oseW n method is called and the window removed.

The d oseAppW n method is also called when the user clicks the close button of the window. This close
button will correspond to the standard close window button depending on the native windowing system. On
X Windows, this button will depend on what window manager you are using. On Windows, this corresponds
to adouble click on the upper left box of thetitle bar, or the X" box in Windows 95. To abort this "close
all" procedure, return O from your class.

Example

11 62; 62; 62; videApp: : Cl oseAppWn <<
int videApp:: C oseAppW n(vW ndow* wi n)
{

/1 This will be called BEFORE a wi ndow has been real ly cl osed.

vi deCndW ndow* cw = (vi deCndW ndow*)wi n; // get our cnd w ndow

if (cw62; CheckC ose()) Il check if OKto close

return vApp:: Cl oseAppW n(wi n); /1 if OK then call vApp nethod
el se

return O; /1 otherw se, abort close process

int CloseLastCmdWindow(vWindow* win, int exitcode)
This method is provided mainly for MS-Windows MDI compatibility. The default behavior of V isto close

the app when the last MDI child window is closed. This corresponds to what would happen on the X version.
However, thisis not standard behavior for Windows MDI apps.

VAppP 21

The V C++ GUI Reference Manual

If your app needs standard Windows behavior, then you should override d oselLast CrdW ndow, and simply
return. Thiswill result in an empty MDI framw with a single active File menu with the commands New,
Open, and Exit. Y ou should also then override vApp: : AppConmmand to handle the New and Open cases. It will
be harmless to duplicate this code for X apps.

The following code sample, taken from the V Text Editor code, shows how to get standard M DI behavior in a
way that is compatible with both Windows and X.

11 62; 62; 62; vedApp: : AppCommand <<
voi d vedApp: : AppCommand(vW ndow* win, ltenVal id, Itenval val, CmdType cType)
{
/1 Commands not processed by the window wi |l be passed here
/1 switch is used to handle enpty MDI frane commands New and Open
/1 for Wndows apps only. Harmess on X

User Debug1(Bui | d, "vedApp: : AppCd(I D: %)\ n",id);
switch (id)
{
case M New
{
(voi d*) theApp->NewAppWn(0, "V Text Editor", 100, 50);

return;

case M Qpen:
{
vedCndW ndow* cw;
cw = (vedCnmdW ndow*) theApp->NewAppW n(0, "V Text Editor", 100, 50);
cw >W ndowConmmand((| t enVal) M_Open, (I tenVal) 0, (CndType) 0) ;

return;

VvApp: : AppCommand(wi n, id, val, cType);

11 62; 62; 62; vedApp:: O oseLast CndW ndow <<<
voi d vedApp: : C oseLast CndW ndow VW ndow* wi n, int exitcode)

{
#i f ndef V_Versi onW ndows
VvApp: : O oselLast CndW ndow(wi n, exi t code) ; // call default for X
#endi f

}

void Exit(void)

Thisisthe normal way to exit from a standard V application. The overridden method can perform any special
processing (e.g., asking ~"Are you sure?") required. The default Exi t will call O oseAppW n for each
window created with NewAppW n, and then exit from the windowing system.

void Keyln(vWindow* win, vKey key, unsigned int shift)

Any input key events not handled by the vw ndow object are passed to VApp: : Keyl n. See Keyl n in the
vW ndow section for details of using keys.

VAppP 22

The V C++ GUI Reference Manual

vWindow* NewAppWin(vWindow* win, char* name, int w, int h, vAppWinInfo* wininfo)

The purpose of the NewAppW n method is to create a new instance of awindow. Most likely, you will override
NewAppW n with your own version, but you still must call the base vApp: : NewAppW n method after your
derived method has completed itsinitializations.

The default behavior of the base NewAppW n classisto set the window title to nane, and the width w and
height h. Note that the height and width are of the canvas, and not necessarily the whole app window. If you
don't add a canvas to the command window, the results are not specified. Usually, your derived

NewAppW n will create an instance of your derived vordw ndow class, and you will passits pointer in the

wi n parameter. If the the wi n parameter is null, then a standard vendW ndow will be created automatically,
although that window won't be particularly useful to anyone.

Y our NewAppW n class may also create an instance of your derived vAppW ni nf o class. Y ou would passits
pointer to thewi nl nf o parameter. If you pass a null, then the base NewAppW n method also creates an
instance of the standard vAppW nl nf o class.

The real work done by the base NewAppW n isto register the instance of the window with theinternal V run
time system. Thisiswhy you must call the base NewAppW n method.

NewAppW n returns a pointer to the object just created. Y our derived code can return the value returned by the
base vApp: : NewAppW n, or the pointer it created itself.

Example

The following shows a minimal example of deriving a NewAppW n method.

vW ndow* nyApp: : NewAppW n(vW ndow* wi n, char* nane, int w, int h,
VAppW nl nf o* w nl nf 0)
{
// Create and register a window. Usually this derived nethod
/1 knows about the w ndows that need to be created, but

/Il it is also possible to create the wi ndow instance outside.

vW ndow* thisWn = win;
VAppW nl nf o* theWnlnfo = w nlnfo;

if (!thisWn) /1 Normal case: we will create the new w ndow

thi sWn = new nyCndW ndow nynane, w, h); // create w ndow
// Now the application would do whatever it needed to create
/1 a new view -- opening a file, tracking information, etc.

/1 This information can be kept in the vAppWnlnfo object.

if (!theWnlnfo) /Il Create if not supplied
VAppW nl nf o* theWnlnfo = new nyAppW nl nf o(nane) ;

/1 Now carry out the default actions
return vApp: : NewAppW n(thi sWn, nane, w, h, theWnlnfo);

VApp 23

The V C++ GUI Reference Manual

Utility Methods

char* ClipboardCheckText()

Returns 1 if there is text available on the clipboard.

void ClipboardClear()

Clears the contents of the clipboard. Deactivates M _Past e.

char* ClipboardGetText()

If there istext on the clipboard, this method will return a pointer to that text.

int ClipboardSetText(char* text)

Thiswill set the system clipboard to the value of t ext . It will also send avApp: : Set Val ueAl | message to
each of your windows to set any command object M Past e to sensitive. (Whenever the clipboard is emptied,
amessageto set M Past e insensitive is also sent.)

Notethat it is up to you to implement clipboard interaction. The vText CanvasPane does hot provide
automatic clipboard support. Thus, your app needsto respond to cut, copy, and paste commands. The
clipboard code will send a message to your Command Window to control the sensitivity of the

M Past e command.

int DefaultHeight()

Returns a default window canvas height value in pixels corresponding to 24 lines of text in the default font.
int DefaultWidth()

Returns a default window canvas width value in pixels corresponding to 80 columns of text in the default
font.

vFont GetDefaultFont(void)

This method returns avFont object representing the default system font. It is a convenience method, and

probably not overly useful to application programs.

vFont GetVVersion(int& major, int& minor)

VAppP 24

The V C++ GUI Reference Manual

Returns the current major and minor version of V.

int IsRunning()

This method returnstrue if the windowing system is active and running. A false return means the program
was started from a nonwindowing environment.

int ScreenHeight()

Returns the overall height of the physical display screen in pixels. Note that this value may or may not be
overly useful. On X, the vConmmandW ndows are drawn on the full display. On the Windows MDI version, the
command windows all fall inside the MDI frame, and thus knowing the size of the whole screenisless
useful.

int ScreenWidth()

Returns the overall width of the physical display screen in pixels. See Scr eenHei ght .

void SendWindowCommandAll(ltemVal id, int val, CmdType ctype)

This method can be used to send a message to the W ndowCommand method of ALL currently active windows.
This method is most useful for sending messages to windows from model ess dialogs. While messages to the
W ndowConmand method usually originate with the system in response to menu picks or command object
selection, it can be useful to send the messages directly under program control. The vDr aw sample program
contains agood example of using SendW ndowConmandAl | (and Set Val ueAl 1) invdrwdl g. cpp. Thereisno
way to send a message to a specific window. The message is sent to all active windows.

void SetAppTitle(char* title)

This method is used to set the title of the main application window. This currently only appliesto the
Microsoft Windows MDI version of V. It isano-op for the X version. It isstill important that you choose a
good title for your main window, and set it either with this method, or by providing a good name to the
vApp initializer.

void SetValueAll(IltemVal itemld, int Val, ItemSetType what)

This method is similar to vW ndow: : Set Val ue, except that the control with the giveniten d in

ALL currently active windows s set. Thisis useful to keep control valuesin different windowsin sync. The
only difference between vApp :: Set Val ueAl | and vW ndow :: Set Val ueAl | isthat the vApp version can
be easily called from dialogs as well as windows.

void SetStringAll(ltemVal itemld, char* title)

This method is similar to vwW ndow: : Set St ri ng, except that the string with the givenit em d in

VAppP 25

The V C++ GUI Reference Manual

ALL currently active windowsiis set. Thisis useful to keep control stringsin different windowsin sync. The
only difference between the vApp: : Set St ri ngAl | version and the vW ndow: : Set St ri ngAl | version isthat
the vApp version can be easily called from dialogs as well as windows.

vAppWinInfo *getAppWinInfo(vWindow* win)

This method provides an easy way to retrieve the vAppW nli nf o (or more typically, aderived class) object
that is associated with awindow. By convention, when awindow isfirst created, it and its associated

vAppW nl nf o object are tracked by NewAppW n. When a user action in awindow causes a method in vApp to
be invoked, thet hi s of that window is usually sent to the vApp method. Y ou then use that vW ndow pointer to
call get AppW nl nf o to get a pointer to the associated vAppW ni nf o object. It will be up to you to determine
what information that object has, and how to use it.

MVC

With release 1.21, V adds support for writing MV C (Model View Controller) applications. The MVC
paradigm is widely used for object-oriented applications. The basic idea of MV C is that your application
consists of some kind of Model for the application. Y ou show various Views of the Model under
management of a controller.

How doesthistrandate to V terms? Generally, it is up to you to build your model. Essentially, it will be your
data structures and whatever else is needed to implement the core of your app. The controller is usualy very
closely related to aview of the model. The view and controller will usually be implemented in a

vCmdW ndow class. Y ou can have different behavior for different views. The power of MV C comes from the
ability of agiven controller to send a message to all Views of the Model to update themselves as appropriate.

Consider asimple editing program that allows you to edit a datafile either in text mode or in hex mode. Y our
app could have two Views of the Model (your internal representation of the file), one atext view, the other a
hex view. Each of these views would be controlled and displayed by individual vCrdW ndow classes. If the
user makes a change in the text view, then the text view controller would send a message to the hex view to
update itself.

V provides two methods to implement MV C, vApp: : Updat eAl | Vi ews, and vW ndow: : Updat eVi ew. Y our
controller sends a message to all other views using Updat eAl | Vi ews, and each view receives the message in
Updat eVi ew.

void UpdateAllViews(vWindow* sender, int hint, void* pHint)

This method is called by the user whenever a change is made to the model, e.g., the document. This causes
vW ndow: : Updat eVi ewto be called for every open window. The parameters are used to both filter and hint
the windows on which actions to take in vwW ndow: : Updat eVi ew.

Generally, you call Updat eAl | Vi ews with sender settot hi s. Updat eAl | Vi ews will not call Updat eVi ewfor
the sender window because typically the change of the model was aresult of an interaction with this
window. If you want the sender to be called, call with sender zero.

The hints are passed to Updat eVi ewto help define what action the view needs to take. Generally, hi nt would

VAppP 26

The V C++ GUI Reference Manual

have avalue set to an enumdefined in your derived vApp class. These values would hint about which kind of
change is made so that only appropriate actions is taken by the appropriate views. The pHi nt istypically a
pointer to the object representing the model.

Tasking

Some applications may have extensive computation requirements. In traditional programming environments,
thisis usually no problem. However, for GUI based applications, the code cannot simply perform extensive
computation in response to some command event (such as a"Begin Computation” menu command). GUIs
make a basic assumption that the application will process events relatively quickly. While computation isin
process, the application will not receive additional events, and may appear to hang if the computation is too
long.

V provides two different approaches to handling compute bound applications. The most straight forward
approach is to have the computation periodically call the V method vApp: : CheckEvent s. CheckEvent s will
process events, and pass the messages to the appropriate V method. This method may be the most appropriate
for applications such as simulations. The second technique is to have the V system call awork procedure
periodically to allow some computation to be performed. This technique may be most appropriate for
applications that have short computations that should be performed even if the user is not entering commands
or interacting with the application. The technique is supported by the vor kSl i ce method.

CheckEvents()

Most V applications will not need this utility. However, it is possible for some compute bound applications to
lock out system response to the events needed to update the screen. If you notice that your application stops
responding to input, or fails to consistently update items in your window, then place callsto

vApp: : CheckEvent s() inyour code somewhere. Y ou may have to experiment how often you need to call it.
It does have some overhead, so you don't want it to slow down your app. But it does need to get called
enough so the system can keep up with the screen updates. This function needs no parameters, and returns no
value.

EnableWorkSlice(long slice)

For applications that need computations to be performed continuously or periodically, even while the user is
not interacting with the program, V provides Enabl eWor kSl i ce and Wor kSl i ce. After Enabl eWor kSl i ce has
been called, V will call the app'ser ksl i ce method every sl i ce milliseconds. The wor kSl i ce method of
every open vCommandW ndow will also be called. Calling Enabl eWor kSl i ce with azero value will stop the
callsto the wor kSl i ce methods.

V uses astandard V vTi mer object to implement this behavior. Thus, al of the information about actual time
intervals and limits on the number of timers discussed in the vTi mer description apply to
Enabl eWor kSl i ce and Wor kSl i ce.

WorkSlice()
When aEnabl eWor kSl i ce has been called with a positive value, V callsvApp: : Wor kSl i ce at approximately

VAppP 27

vtimer.htm

The V C++ GUI Reference Manual

the specified interval (or more likely, the overridden method in your app), as well as the

vW ndow: : Wor kSl i ce method of each open vCommandwW ndow. Y our application can override the appropriate
Wor kSl i ce method to perform short, periodic computations. Theses computations should be shorter than the
timeinterval specified for Enabl eWor kSl i ce. This may be difficult to ensure since different processors will
work at different speeds. One simple way to be sure you don't get multiple callsto the Wwor kSl i ce method is
to set a static variable on entry to the code. Note that vConmandW ndow also has awer kSl i ce method. The
Wor kSl i ce for thevApp is called first, followed by a call to each open vConmandW ndow sequentially in no
specific order.

See Also

vWindow, VAppWinInfo

VAppP 28

vwindow.htm
vawinfo.htm

vAppWinInfo

A utility classto for global data.

Synopsis

Header:
<v/vaw nf o. h>
Class name:

VAppWininfo

Description

Thisclassis not very useful. It was originally intended to be used as a base class for deriving your own

my AppW nl nf o classto serve as a controller data base for the MV C architecture, but it turns out that it isn't
really that useful for that. The class will remain asapart of V. If you find areally useful application for this
class, please let us know! There are new methods associated with vApp that are much better for MVC
support.

V makes using a AppW ni nf o object easier by automatically tracking it when you create each new window

with NewAppW n. Y ou can then easily retrieve the AppW nl nf o object associated with each window by using
thevApp: : get AppW nl nf o method.

Constructor

VAppWinInfo(char* infoName ="", void* ptr = 0)
Y ou can provide two values for the vAppW nl nf o constructor. Thefirst is a pointer to a character string
which you can use to store some name meaningful to you application. The secondisavoi d * pointer, and

can be used to point to anything you want. The constructor makes a copy of the name string, but just copies
the void pointer and does not copy the object pointed to.

Utility Methods

vAppWinInfo 29

The V C++ GUI Reference Manual

virtual char* infoName()

Returns a pointer to the name supplied to the constructor.

virtual void* getPtr()

Returns the value of the pointer name supplied to the constructor.

See Also

VAPpP

vAppWinInfo

30

vapp.htm

vBaseGLCanvasPane

A specialized base class to support OpenGL graphics.

Synopsis

Header:

<v/vbgl cnv. h>
Class name:

vBaseGL CanvasPane
Hierarchy:

vPane ->vBaseGL CanvasPane

Description

Thisis aspecialized classto provide very basic support for the OpenGL graphics package. Unlike other
V canvas panes, this class does not use avDC class. Instead, it has afew features designed to support
OpenGL.

Thisisabasic class. It does not provide many convenience methods to support OpenGL at a high level, but it
does hide all the messy details of interfacing with the host GUI environment, and provides the first really
easy way to generate sophisticated interfaces for OpenGL applications. A more sophisticated class called
vG@.CanvasPane that will provide a number of convenience operationsis under development, but the base
classis still very useful.

By following a standard convention to structure V/OpenGL code, it isrelatively easy to generate applications.
The details of this convention are explained in the tutorial section of this description.

See the section vPane for ageneral description of panes.

Constructor

vBaseGLCanvasPane(unsigned int vGLmode)

vBaseGLCanvasPane 31

The V C++ GUI Reference Manual

ThevBaseG.CanvasPane constructor allows you to specify certain attributes of the visual used by OpenGL.
The options, which can be ORed together, include:
vGL_Default

Use the default visual, which includesvGL_RGB and vGL_Doubl eBuf f er . V will use this
default if you don't provide a value to the constructor.

vGL_RGB
Thisisthe standard RGBA mode used by most OpenGL programs. The size of the RED,
GREEN, and BLUE planes are maximized according to the capabilities of the host machine.
An ALPHA planeisnot included unlessthe vG._Al pha property is also specified.
vGL_Alpha
Used to include an APLHA plane. Not all machines support ALPHA planes.
vGL_Indexed

Use indexed rather than RGB mode. V will attempt to maximize the usefulness of the palette.
Y ou should not specify both RGB and Indexed.

vGL_DoubleBuffer

Use Double buffering if available. Single buffering is assumed if vG_._Doubl eBuf f er isnot
specified.

vGL_Stereo
Use a Stereo buffer if available.
vGL_Stencil
Use Stencil mode if available.
vGL_Accum
Use accumulation buffersif available.
vGL_Depth
Use Depth mode if available.
Not all of these attributes are available on all OpenGL implementations, and V will attempt to get a
reasonable visual based on your specifications. For now, the vG._Def aul t mode works well for many
OpenGL applications.

V supports only one visual per application, and the first vBaseG.CanvasPane created determines the
attributes of the visual used.

vBaseGLCanvasPane 32

The V C++ GUI Reference Manual

Utility Methods

The following methods provide useful service without modification. Sometimes you will want to override
some of these, but you will then usually call these methods from your derived class. Most of these methods
are the equivalent of the normal V vCanvasPane class.

VCursor GetCursor()

Returnstheid of the current cursor being used in the canvas. See Set Cur sor .

virtual int GetHeight()

Returns the height of the current drawing canvasin pixels.

virtual int GetHScroll(int& Shown, int& Top)
Get the status of the Horizontal Scroll bar. Returns 1 if the scroll bar is displayed, O if not. Returnsin

Shown and Top the current values of the scroll bar. See Set VScr ol | for adescription of the meanings of
parameters.

virtual int GetVScroll(int& Shown, int& Top)

Get the status of the Vertical Scroll bar. See Get HScr ol | for details.

virtual int GetWidth()

Returns the width of the current drawing canvasin pixels. Thisis either theinitial size of the window, or the
size after the user has resized the window.

void SetCursor(VCursor id)

This method sets the cursor displayed while the mouse in in the current canvas area. See the description of
vCanvasPane for details.

void SetWidthHeight(int width, int height)

Thiswill set the size of the drawing canvasto hei ght and wi dt h in pixels. It will also cause aResi ze event

message to be sent to the window.

virtual void SetHScroll(int Shown, int Top)

vBaseGLCanvasPane 33

The V C++ GUI Reference Manual

Set the horizontal scroll bar See the description of vCanvasPane for details.

virtual void SetVScroll(int Shown, int Top)

Set the vertical scroll bar. See the description of vCanvasPane for details.

virtual void ShowHScroll(int OnOrOff)

virtual void ShowVScroll(int OnOrOff)

See the description of vCanvasPane for details.

Methods to Override

virtual void HPage(int Shown, int Top)

When the user moves the horizontal scroll bar, it generates an HPage event. See the description of
vCanvasPane for details.

virtual void HScroll(int step)

This method is called when the user enters a single step command to the scroll bar. See the description of
vCanvasPane for details.

virtual void MouseDown(int x, int y, int button)

Thisis called when the user clicks a button on the mouse.

It isimportant to remember that all mouse coordinates are in screen pixels, and use 0,0 as the upper | eft
corner. You will probably have to map them to the actual coordinates in use by your OpenGL graphic.

See the description of vCanvasPane for details.

virtual void MouseMotion(int x, int y)

Thisis called when the mouse moves while a button is not pressed. See the description of vCanvasPane for
details.

virtual void MouseMove(int x, int y, int button)

vBaseGLCanvasPane 34

The V C++ GUI Reference Manual

Thisis called when the mouse moves while a button is pressed. See the description of vCanvasPane for
details.
virtual void MouseUp(int x, int y, int button)

Thisis called when the user rel eases the mouse button. See the description of vCanvasPane for details.

virtual void Redraw(int x, int y, int width, int height)

Redr aw is called when the canvas needs to be redrawn. The first redraw is generated when the canvasis first
created. Other redraws are generated when the canvas is covered or uncovered by another window, and
means the contents of the canvas must be repainted. Normally, you will put acall to the code that redraws
your OpenGl picture here.

The parameters of Redr aw represent the rectangular area that needs to be repainted. This areasis not always
the whole canvas, and it is possible that many Redr aw events will be generated in arow as the user drags a
covering window off the canvas.

The default Redr awin vBaseGL.CanvasPane isano-op, and your subclass needs to override Redr aw.

virtual void Resize(int newW, int newH)

A Resi ze event is generated when the user changes the size of the canvas using the resize window command
provided by the host windowing system.

The default Resi ze in vBaseG.CanvasPane iSano-op, and your subclass needs to override Redr aw.

virtual void VPage(int Shown, int Top)

See the description of vCanvasPane for details.

virtual void VScroll(int step)

See the description of vCanvasPane for details.

Specific OpenGL methods

virtual void graphicsinit(void)
This method is called after the OpenGL drawing canvas has been created, and must be overridden by your

code. Y ou use this method to set up whatever you would usually do to initialize OpenGL. In practice, thisisa
very convenient way to get things started.

vBaseGLCanvasPane 35

The V C++ GUI Reference Manual

Itiscritical that you call the gr aphi csl ni t method in the base vBaseG.CanvasPane classfirst, then
whatever OpenGL calls you need. See the example in the OpenGL tutorial section for more details.

void vglMakeCurrent(void)

This method should be called by your program before you call any OpenGL drawing code. Normally, thisis
called first thing in Redr aw, or whatever code you use to draw with. It is essential to call this, and sinceit is
cheap to call thisfor an already current drawing canvas, it is better to be safe.

virtual void vglFlush(void)

Call this method after you are finished calling OpenGL to draw a picture. It automatically handles the details
of displaying your picture in the window, including double buffering and synchronization. It is normally
found in your Redr aw method.

virtual XVisuallnfo* GetXVisuallnfo()

This method is specific to X, and will return a pointer to the Xvi sual | nf o structure currently being used.
There will be an equivalent method available for MS-Windows.

Tutorial

A minimal V/OpenGL application will consist of a class derived from vApp, aclass derived from
vCmdW ndow, and a canvas pane class derived from vBaseGLCanvasPane. Most of your drawing code will be
in or called from your derived canvas pane.

Within that class, you will minimally need to override the gr aphi csl ni t method, and the Redr aw method.
The following code fragment, adapted directly from the example code in Mark J. Kilgard's book, OpenGL,
Programming for the X Window System, shows how simple it can be to draw a picture. The full code can be
found in the opengl / shapes directory inthe V distribution.

static int initDone = 0;

| | ==========62; 62; 62; test @ CanvasPane:: graphicslnit <<<
voi d test G.CanvasPane: : graphi csl nit (voi d)
{
/1 Always call the superclass first!
vBase@.CanvasPane: : graphicslnit();

/1 Exanple from Mark Kil gard

gl Enabl e(GL_DEPTH_TEST) ;

gl C ear Dept h(1. 0);

gl earColor(0.0, 0.0, 0.0, 0.0); /* clear to black */
gl Mat ri xMode(GL_PRQIECTI ON) ;

gl uPer spective(40.0, 1.0, 10.0, 200.0);

gl Mat ri xMode(GL_MODELVI EW ;

vBaseGLCanvasPane 36

The V C++ GUI Reference Manual

gl Transl atef (0.0, 0.0, -50.0);
gl Rotatef(-58.0, 0.0, 1.0, 0.0);

i nitDone = 1;

}

| | ============62, 62; 62; test G CanvasPane:: Spin <<<

voi d test G.CanvasPane: : Spi n()

{
/1 Called fromthe parent CrdW ndow for aninmation
vgl MakeCurrent (); /1 Call this FIRST!
gl Rotatef(2.5, 1.0, 0.0, 0.0);
Redraw(0, 0, 0, 0);

}

| | ============62; 62; 62; test G.CanvasPane: : Redr aw <<<

voi d test G .CanvasPane: : Redrawm(int x, int y, int w, int h)

{
static int inRedraw = 0;
if (inRedraw || !'initDone) // Don't draw until initialized

return;

i nNRedraw = 1; // Don't allow recursive redraws.
vgl MakeCurrent (); /1 Call this to nake current
/'l Code taken directly fromMark J. Kilgard s exanple
/1 Draws 3 intersecting triangular planes
gl dear(G_COLOR BUFFER BI T | G._DEPTH BUFFER BIT);
gl Begi n(G._POLYGQON) ;
gl Col or3f (0.0, 0.0, 0.0); gl Vertex3f(-10.0, -10.0, 0.0);
gl Color3f(0.7, 0.7, 0.7); gl Vertex3f(10.0, -10.0, 0.0);
gl Color3f(1.0, 1.0, 1.0); gl Vertex3f(-10.0, 10.0, 0.0);
gl End() ;
gl Begi n(G._POLYGON) ;
gl Color3f(1.0, 1.0, 0.0); gl Vertex3f(0.0, -10.0, -10.0);
gl Color3f(0.0, 1.0, 0.7); gl Vertex3f (0.0, -10.0, 10.0);
gl Col or3f (0.0, 0.0, 1.0); gl Vertex3f(0.0, 5.0, -10.0);
gl End() ;
gl Begi n(G._POLYGON) ;
gl Color3f(1.0, 1.0, 0.0); gl Vertex3f(-10.0, 6.0, 4.0);
gl Color3f(1.0, 0.0, 1.0); gl Vertex3f(-10.0, 3.0, 4.0);
gl Color3f (0.0, 0.0, 1.0); gl Vertex3f(4.0, -9.0, -10.0);
gl Color3f(1.0, 0.0, 1.0); gl Vertex3f(4.0, -6.0, -10.0);
gl End();
vgl Fl ush(); /1 Call when done draw ng to display
inRedraw = 0; // Not in here any nore

}

Note that this example includes a method called Spi n. It is used to animate the intersecting planes. In a

V OpenGL application, the easiest way to implement animation is with the timer. Create atimer in the
Command Window class, and then call the animation code in the canvasin response to timer events. Y ou
should keep code to prevent recursive redraws if the timer events end up occurring faster than the picture can

vBaseGLCanvasPane 37

The V C++ GUI Reference Manual

be rendered, which might happen for complex pictures or heavily loaded systems. See the example code in
thev/ opengl directory for a complete example of animation using the timer.

Comments

Y ou should be able to include regular V Canvases in your application, as well as OpenGL canvases. In
versions before 1.20, the OpenGl canvas was a replacement for the standard vCanvasPane. It is now properly
derived from vCanvasPane.

I've tried to make the OpenGL canvas easy to use. The best way (for now) to learn how to use the classisto
look at the sample programs included here. To use it, compile your code, and link it with the V library and
the V OpenGL library.

This version has been tested on Linux with Mesa 2.6. It used to run on Silicon Graphics machines, and there
iS no reason to assume that has changed.

When | installed Mesa, | had to add some symbolic links to have it link like standard OpenGL, but you could
also change the library switchesin the Makefiles.

There are a several of samples, some derived from GLUT, others from the Mesa distribution. Each sampleis
included in a separate directory. There are mingw32 makefiles for MS-Windows for all examples, and Linux
makefiles for many.

This documentation for vBaseGL CanvasPane is still incomplete. The best way to useit isto look at and the
examples. I've only been able to get the Windows version to work correctly under mingw32 and Borland
C++ 5.0. Microsoft C++ 4.0 couldn't find the proper link libraries. If someone knows how to get this problem
solved, please let me know.

The Mingw32 distribution requires proper .h files. They are included in the gnuwin32 directory. The OpenGL
header files | provide are edited to remove referencesto CALLBACK parameters, which means the
tesselation stuff doesn't work.

The Windows version doesn't seem to support Indexed color mode, even though the definitions are there, and
some code looks like it generates a correct graphics context. The problem for now seemsto be thereisno
equivalent of glutSetColor to set a color index. Does ANY ONE in the whole world actually use Indexed
color?If so, then I'll look at glut and seeif | can add indexed color support.

I am working on developing a new vOpenGL CanvasPane class with aV user. The new class will have built

in support for some vector stuff and some lighting stuff. Would anyone like some of the glut shapes: spheres,
cubes, etc? They shouldn't be too hard to add, but | don't know if they really get used.

See Also

vCanvasPane

vBaseGLCanvasPane 38

vcanvas.htm

vBrush

A classto specify the brush used to fill shapes.

Synopsis

Header:

<v/vbrush. h>
Class name:

vBrush

Description

Brushes are used to fill shapes. Brushes have two attributes, including color and style.

Methods

vBrush(unsigned int r =0, unsigned int g = 0, unsigned int b = 0, int style = vSolid)

The brush constructor alows you to set the initial color and style of the brush. The default constructs a solid
black brush.

int operator ==, =

Y ou can use the operators == and ! = for comparisons.

vColor GetColor()

This method returns the current color of the brush asavCol or object.

vBrush 39

The V C++ GUI Reference Manual

int GetFillMode()

This method returns the fill mode of the brush (either vAl t er nat e or vW ndi ng).

int GetStyle()

This method returns the current style of the brush.

void SetColor(vColor& c)

Y ou can use this method to set the brush color by passing in avCol or object.

int SetFillMode(int fillMode)

This method sets the fill mode of the brush. The fillMode parameter specifies one of two alternative filling
algorithms, vAl t er nat e or vW ndi ng. These algorithms correspond to the equivalent algorithms on the
native platforms.

void SetStyle(int style)

This method is used to set the style of the brush. Brush styles include:

vSolid

The brush fills with a solid color.
vTransparent

The brush is transparent, which alows you to draw unfilled shapes.
vHorizontalHatch

The brush fillswith a horizontal hatch pattern in the current color.
WerticleHatch

The brush fillswith a vertical hatch pattern.
vLeftDiagonalHatch

The brush fills with aleft leaning diagonal hatch pattern.
vRightDiagonalHatch

The brush fillswith aright leaning diagonal hatch pattern.

vBrush 40

vBrush

The V C++ GUI Reference Manual

vCrossHatch
The brush fillswith avertical and horizontal cross hatch pattern.
vDiagonal CrossHatch

The brush fills with a diagonal cross hatch pattern.

41

vCanvasPane

A base classto build graphical and text canvas panes.

Synopsis

Header:

<v/vcanvas. h>
Class name:

vCanvasPane
Hierarchy:

vPane ->vCanvasPane

Description

Thisisthe base drawing class. Y ou useit to build more complicated drawing canvases, either for graphical
drawing or text drawing. The vCanvasPane class has all the basic methods needed to interact with the
drawing canvas. It does not, however, know how to handle repainting the screen on Redr aw Or Resi ze events.
It provides utility methods for drawing on the canvas, and several other methods that are normally overridden
by your application.

See the section vPane for ageneral description of panes.

Utility Methods

The following methods provide useful service without modification. Sometimes you will want to override
some of these, but you will then usually call these methods from your derived class.

Drawing
ThevcCanvasPane normally creates avCanvasPaneDC to use for drawing, and class provides direct support

by including direct calls for the drawing methods described in the vDC section. If your drawing will only be to
the screen, then you can use the methods of the vCanvasPane class directly. Each of these methodsis really

vCanvasPane 42

vpane.htm

The V C++ GUI Reference Manual

an inline function that expandsto _cpDC- >Dr awMhat ever ().

If your drawing code might want to draw to both a screen and a printer, you might want to use a parameter to
the appropriate drawing canvas. Y ou can get the vDC used by the vCanvasPane by calling Get DC() .

virtual void CreateDC(void)

This method is called when the vCanvasPane isinitialized. The default is to create a drawing canvas using
_cpDC = new vCanvasPaneDC(t hi s); . If you want to derive a different canvas pane class from
vCanvasPane perhaps using a more sophisticated drawing canvas derived from the vCanvasPaneDC class,
you can override the Cr eat eDC method and set the protected vDC* _cpDC pointer to an instance of your new
drawing canvas (e.g., _cpDC = new nyCanvasPaneDC(t hi s) instead.

vDC* GetDC()

Returns a pointer to the vDC of the current drawing canvas. The vDC can be used for most of the drawing
methods to achieve drawing canvas independence. If your code draws via avDC pointer, then the same code
can draw to the screen canvas or the printer canvas depending on what the vDC points to.

VCursor GetCursor()

Returnstheid of the current cursor being used in the canvas. See Set Cur sor .

virtual int GetHeight()

Returns the height of the current drawing canvas in pixels.

virtual int GetHScroll(int& Shown, int& Top)

Get the status of the Horizontal Scroll bar. Returns 1 if the scroll bar is displayed, O if not. Returnsin
Shown and Top the current values of the scroll bar. See set vScrol | for a description of the meanings of
parameters.

vWindow* GetPaneParent()

Returns a pointer to the parent vw ndow of the canvas pane.

virtual int GetVScroll(int& Shown, int& Top)

Get the status of the Vertical Scroll bar. See Get HScrol | for details.

virtual int GetWidth()

vCanvasPane 43

The V C++ GUI Reference Manual

Returns the width of the current drawing canvasin pixels. Thisis either the initial size of the window, or the

size after the user has resized the window.

void SetCursor(VCursor id)

This method sets the cursor displayed while the mouse in in the current canvas area. The default cursor isthe

standard arrow cursor used on most host platforms. Y ou can change the cursor displayed within the canvas
areaonly by calling this method.

The cursors currently supported include:

VC_Arrow

The standard arrow cursor.
VC_CenterArrow

An upward point arrow.
VC_CrossHair

A cross hair cursor.
VC_EWArrows

Double ended horizontal arrows (EastWest).
VC Hand

A hand with apointing finger (NOT ON WINDOWS).
VC _|Bar

An | bar cursor.
VC lcon

A cursor representing an icon.
VC_NSArrows

Double ended vertical arrows (NorthSouth).
VC_Pencil

A pencil (NOT ON WINDOWS).

VC_Question

vCanvasPane

44

The V C++ GUI Reference Manual

A question mark cursor (NOT ON WINDOWS).
VC_Sizer

The cursor used for sizing windows.
VC_Wait

A cursor that symbolizes waiting, usually an hour glass.
VC X

An X shaped cursor (NOT ON WINDOWS).

void SetWidthHeight(int width, int height)

Thiswill set the size of the drawing canvas to hei ght and wi dt h in pixels. It will also cause aResi ze event
message to be sent to the window.

virtual void SetHScroll(int Shown, int Top)

Set the horizontal scroll bar. See set vscrol | for a description of the parameters.

virtual void SetVScroll(int Shown, int Top)

Set the vertical scroll bar. The shown parameter is avalue from 0 to 100, and represents the percent of the
scroll bar shows of the view in the canvas. For example, the canvas might be displaying text from afile. If the
file was 100 lines long, and the window could show 20 lines, then the value of shown would be 20, meaning
that the canvas is showing 20 percent of the file. Asthe size of the data viewed in the canvas changes, your
program should change the scroll bar to corresponding values.

The Top parameter represents where the top of the scroll indicator should be placed. For example, if the first
line displayed in the canvas of a 100 line file was line 40, then Top should be 40, representing 40 percent.

This model of ascroll bar can be mapped to al the underlying windowing systems supported by V, but the
visual appearance of the scroll bar will vary.

virtual void ShowHScroll(int OnOrOff)

virtual void ShowVScroll(int OnOrOff)

When a canvasisfirst displayed, it will begin with both horizontal and scroll bars not shown by default.
ShowHScr ol | and ShowvScr ol | can be used to selectively turn on and off the canvas scroll bars. When a
scroll bar isturned off or on, the size of the canvas may changes, so you should also call Resi ze after you
have set the scroll bars.

vCanvasPane 45

The V C++ GUI Reference Manual

Y ou must not call either of these methods until the canvas has actually been instantiated on the screen. This
means if your application needs to start with scroll bars, you should have the callsto Showvscr ol | and
ShowHScr ol | in the code of your vCndW ndow class constructor (or other initialization code) after calling
vW ndow: : ShowwW ndow in your class constructor.

Platform Dependent

If you simply must access the native window for low level drawing, V provides a couple of platform
dependent functions that can sometimes help. Be warned that your code will then be platform dependent.

Methods for MS-Windows

HWND DrawingWindow()

This returns the HWAD of the drawing window of the current canvas. Thisis then used to get a DC as needed.
For example:

/1 Assune mycanvas is a pointer to your canvas pane.
/1l Call Drawi ngWndow to get the HWND used by canvas
HW\D dr awi ngW ndow = nycanvas- >Dr awi ngW ndow() ;

/1 Now use that HWND to call the native Wndows GetDC to get a DC
HDC nmyHDC = :: Get DC(dr awi ngW ndow) ;

/1 use nyHDC to do drawi ng....

/1 note that you will need to use native Wndows drawi ng calls here,
/1 and not use V draw ng functions. You can use V stuff |IF you

/1 first release the DC, call the V code, and then get your

/1 own DC again. But since you are really using the DCin a native
/1 way, why use V at all for the drawing part at this point?

/1 The V @ stuff will still work fine.

/1 your draw ng code here

/1 | MPORTANT! When done draw ng, youj mnust rel ease the DC
.. Rel easeDC(dr awi ngW ndow, mnmyHDC) ;

Methods for X

Widget DrawingWindow()

Thisreturnsthe X w dget used by the canvas.

vCanvasPane 46

The V C++ GUI Reference Manual

Drawable GetXDrawable()

This returnsthe X Dr awabl e used by the canvas.

Methods to Override

virtual void FontChanged(int vf)

Called when the font is changed. This usually means your application needs to resize the window and
recalculate the number of rows and columns of text that can be displayed.

virtual void HPage(int Shown, int Top)

When the user moves the horizontal scroll bar, it generates an HPage event. It is up to your program to
intercept (override) this method, and provide proper interpretation. This event usually is used for large
movements. The meaning of Shown and Top represent the state of the scroll bar as set by the user. It isthen up
to your program to display the correct portion of the data shown in the canvas to correspond to these values.

Y our program uses Set HScr ol | to set appropriate values, and they are explained there. The Shown value
supplied here will correspond to the value you program set for the scroll bar. The Top value should indicate
the meaningful change as input by the user.

virtual void HScroll(int step)

This method is called when the user enters a single step command to the scroll bar. The value of st ep will be
positive for right or negative for left scroll. These scrolls are usually interpreted as discreet steps - either a
line or screenful a atime. It is up to your application to give an appropriate interpretation.

virtual void MouseDown(int x, int y, int button)

Thisis called when the user clicks a button on the mouse. The x and y indicates the position of the mouse in
the canvas when the button was clicked. Mouse events in vCanvasPane are no-ops, and your subclass of
vCanvasPane will need to handle proper interpretation of mouse clicks.

Sorry, but thanks to the Macintosh, handling of buttonsis a bit nonportable. The but t on parameter will have
avalueof 1, 2, or 3. On X based systems, 1 isthe left button, 2 is the middle button, and 3 is the right button.
On Windows, 1 isthe left button, and 3 isthe right button. Thus, applications using the left and right buttons
are portable from X to Windows. The single Macintosh button will return avalue of 1.

If you intend your applications to port to al three platforms, you will have to account for the single

Macintosh button. If you ignore X's middle button, then your applications can be directly portable from X to
Windows.

vCanvasPane 47

The V C++ GUI Reference Manual

virtual void MouseMotion(int x, int y)

Thisis called when the mouse moves while a button is not pressed, and gives the current x and y of the
mouse. Most applications will ignore this information.

virtual void MouseMove(int x, int y, int button)

Thisis called when the mouse moves while a button is pressed, and gives the new x, y, and but t on of the
mouse. Mouse events in vCanvasPane are no-ops, and your subclass needs to interpret them. Note that
scaling appliesto output only. The mouse events will provide unscaled coordinates, and it is up to your code
to scale mouse coordinates appropriately. Mouse coordinate do have the translation added.

virtual void MouseUp(int x, int y, int button)

Thisis called when the user rel eases the mouse button, and gives the final location of the mouse. Mouse

events in vCanvasPane are no-ops, and your subclass needs to interpret them.

virtual void Redraw(int x, int y, int width, int height)

Redr aw is called when the canvas needs to be redrawn. The first redraw is generated when the canvasis first
created. Other redraws are generated when the canvas is covered or uncovered by another window, and
means the contents of the canvas must be repainted. The vCanvasPane does not know how to repaint the
contents of the canvas, so you must override this method to be able to keep the canvas painted.

The parameters of Redr aw represent the rectangular area that needs to be repainted. This areasis not always
the whole canvas, and it is possible that many Redr aw events will be generated in arow as the user drags a
covering window off the canvas.

The default Redr awin vCanvasPane iSsano-op, and your subclass needs to override Redr aw.

virtual void Resize(int newW, int newH)

A Resi ze event is generated when the user changes the size of the canvas using the resize window command
provided by the host windowing system.

The default Resi ze in vBaseGL.CanvasPane iSano-op, and your subclass needs to override Redr aw.

virtual void VPage(int Shown, int Top)

See HPage.

virtual void VScroll(int step)

This method is called when the user enters a single step command to the vertical scroll bar. The value of
st ep will be positive for down or negative for up scroll. These scrolls are usually interpreted as discreet steps

vCanvasPane 48

The V C++ GUI Reference Manual

- either aline or screenful at atime. It is up to your application to give an appropriate interpretation.

See Also

vTextCanvasPane

vCanvasPane

49

vtextcnv.htm

vCanvasPaneDC

The drawing canvas class for CanvasPanes.

Synopsis

Header:

<v/vcpdc. h>
Class name:

vCanvasPaneDC
Hierarchy:

vDC ->vCanvasPaneDC

Description

This classis normally automatically used by the vCanvasPane class. It provides the actual implementation of

the screen drawing canvas class.

vCanvasPaneDC

50

vcanvas.htm

vCommandPane

Used to define commands on a command bar.

Synopsis

Header:
<v/vcndpane. h>
Class name:
vCommandPane
Used by:

vCmdWindow

Description

A command pane is a horizontal bar in acommand window that holds Conmandbj ect s. Y ou can use any of
the Commandoj ect s, although they all might not make sense to use on acommand bar (aList, for example,
isabit large for the visual paradigm, but it would work). The layout is left to right, so you don't need to fill

in the RightOf and Below fields. Y ou can include Frames in a command bar, and commands contained in that
frame do use the RightOf and Below attributes.

Y ou define the commands on a command bar using a Conmandbj ect array. You first create the command
pane with myGrdPane = new vCommandPane(CommandBar) , and then add it to the window with
AddPane(myCrdPane) .

Y ou then handle the command objects in a command bar pretty much like the same way asin adialog. The
main differenceisthat you use the vW ndow versions of Set val ue and W ndowConmmand instead of the

corresponding methods of the vDi al og class. Other than the |€eft to right ordering, things are pretty much the
same.

Example

The discussion of ConmandObj ect and vDi al og contains several examples of defining command objects.

See the section vPane for ageneral description of panes.

vCommandPane 51

vpane.htm

See Also

The V C++ GUI Reference Manual

vCmdWindow, vStatus, CommandObject, vDialog, vPane

vCommandPane

52

vcmdwin.htm
vstatus.htm
cmdobj.htm
vdialog.htm
vpane.htm

vCmdWindow

A classto show awindow with various command panes.

Synopsis

Header:

<v/vcndwi n. h>
Class name:

vCmdWindow
Hierarchy:

vBaseWindow ->vWindow ->vCmdWindow
Contains:

vDiaog, vPane

Description

The vComdW ndow class is derived from the vw ndow class. This classisintended as a class that serves as a
main control window containing various vPane objects such as menu bars, canvases, and command bars. The
main difference between the vcndw ndow class and the vw ndow class is how they are treated by the host
windowing system. Y ou will normally derive your windows from the vCndw ndow class.

Constructor

vCmdWindow(char* title)
vCmdWindow/(char* title, int h, int w)

These construct avcmdW ndow with atitle and a size specified in pixels. Y ou can use

vCmdWindow 53

vwindow.htm
vdialog.htm
vpane.htm

The V C++ GUI Reference Manual

t heApp- >Def aul t Hei ght () andt heApp- >Def aul t W dt h() inthe call to the constructor to create a
““standard" size window. Note that the height and width are of the canvas area, and not the entire window.

Inherited Methods

See the section vwW ndow for details of the following methods.

virtual void KeyIn(vKey key, unsigned int shift)

virtual void MenuCommand(ltemVal itemld)

virtual void WindowCommand(ltemVal Id, IltemVal Val, CmdType Type)

virtual void AddPane(vPane* pane)

virtual void GetPosition(int& left, int& top, int& width, int& height)

virtual int GetValue(ltemVal itemld)

virtual void RaiseWindow(void)

virtual void ShowPane(vPane* wpane, int OnOrOff)

virtual void SetValue(ltemVal itemld, int Val, temSetType what)

virtual void SetString(ltemVal itemld, char* title)

virtual void SetTitle(char* title)

virtual void UpdateView(vWindow* sender, int hint, void* pHint)

virtual void CloseWin()

vCmdWindow 54

See Also

vWindow

vCmdWindow

The V C++ GUI Reference Manual

55

vwindow.htm

vColor

A classfor handling and specifying colors.

Synopsis

Header:

<v/vcolor. h>
Class name:

vColor

Description

The V color model alows you to specify colors as an RGB value. Theintensity of each primary color, red,
green, and blue are specified as a value between 0 and 255. This allows you to specify up to 224 colors. Just
how many of all these colors you can see and how they will look on your display will depend on that display.
Even so, you can probably count on (255,0,0) being something close to red on most displays. Given this 24
bit model, thevCol or class allows you to define colors easily.

In order to make using colors somewhat easier, V has defined a standard array of 16 basic colors that you can
access by including v/ vcol or. h>. Thisarray iscalled vst dCol or s. You index the array using the symbols
vC Bl ack, vC _Red, vC _Di nRed, vC_Geen, vC _Di nereen, vC Bl ue, vC _Di nBl ue, vC_Yel | ow,

vC_Di niel | ow, vC_Magent a, vC_Di mvagent a, vC_Cyan, vC_Di nCyan, vC _Dar kG ay, vC_MedG ay, and
vC_Whi t e. For example, use the standard color vSt dCol or s[vC_G een] to represent green. Y ou can also get
achar for the color by using the symbol to index the char * vCol or Nare[16] array.

Thefile <v/ vch2x4. h> contains definitions for 8 color buttonsin a2 high by 4 wide frame. Thefile
<v/vch2x8. h> hasa?2 by 8 frame of all 16 standard colors. Y ou can specify the size of each button in the
frame by defining vC_Si ze. The default is 8. Y ou can aso specify the location in adialog of the color button
frame by defining the symbolsvC_Franme, vC Ri ght Of, andvC Bel ow. Theids of each button in the frame
correspond to the color indexes, but with a Mprefix (e.g., M Red for vC_Red). See the examplein v/ exanp for
and example of using the standard color button frames.

Also note that unlike most other V aobjects, it makes perfect sense to assign and copy vCol or values. Thus,
assignment, copy constructor, and equality comparison operators are provided.

vColor 56

The V C++ GUI Reference Manual

Constructor

vColor(unsigned int rd 0, unsigned int gr = 0, unsigned int bl = 0)

The class has been defined so you can easily initialize a color either by using its constructor directly, or
indirectly viaan array declaration. Each color has ared, green, and blue value in the range of 0 to 255.

/| Declare Red via constructor
vCol or btncolor(255, 0, 0); /1l Red

/'l Declare array with green and bl ue
vCol or GreenAndBl ue[2] =

(0, 255, 0), /1 Green
(0, 0, 255) /1 Bl ue
}.

Utility Methods

BitsOfColor()

This method returns the number of bits used by the machine to display to represent color. A value of 8, for
example, means the computer is using 8 bitsto show the color.

ResetColor(unsigned int rd = 0, unsigned int gr = 0, unsigned int bl = 0)

ResetColor(vColor& c)

Like the set method, this method will set all three values of the color at once. However, V triesto preserve
entriesin the system color palette or color map with Reset Col or. Y 0ou can also passavCol or object.

Consider the following code excerpt:

vCol or aCol or; /1 AV Col or
vBrush aBrush;
int iy;

for (iy =0 ; iy < 128 ; ++iy)
{
aColor.Set(iy,iy,iy); /'l Set to shade of gray
aBrush. Set Col or (aCol or); // Set brush
canvas. DrawLi ne(10, i y+100, 200,iy+100); // Draw line

This example will use up 128 color map entries on some systems (X, for example). Once a system has run out

vColor

57

The V C++ GUI Reference Manual

of entries, V will draw in black or white. When these systems run out of new color map entries, the color
drawn for new colors will be black or white.

vCol or aCol or; /1 AV Col or
vBrush aBrush;
int iy;

for (iy =0 ; iy < 128 ; ++iy)
{
aCol or. ResetColor(iy,iy,iy); /1 Set to shade of gray
aBrush. Set Col or (aCol or); // Set brush
canvas. DrawLi ne(10,iy+100, 200,iy+100); // Draw line

This example accomplishes the same as the first, but does not use up color map entries. Instead, the entry
used for aCol or isreused to get better use of the color map. If your application will be working with alarge
number of colorsthat will vary, using Reset Col or will minimize the number of color map accesses.

On some systems, and systems with afull 24 bits of color, Reset Col or and Set work identically.

WARNING: If you intend to use Reset Col or onavCol or object, then Reset Col or isthe only way you
should change the color of that object. Y ou should not use the color assignment operator, or Set .

Reset Col or needsto do some unconventional things internally to preserve color palette entries, and these
can be incompatible with regular assignment or Set . Y ou can, however, safely use such avCol or object with
any other vCol or object. For example:

vCol or c1, c2;

cl. Reset Col or (100, 100, 100); /1 You can use cl with others.
c2 = cl; /1 OK, but this = now nakes c2

/'l inconpatible with ResetCol or.
c2. Reset Col or (200, 200, 200) ; // DON T DO TH S

Set(unsigned int rd = 0, unsigned int gr = 0, unsigned int bl = 0)

Set all three values of the color at once.

void SetR(unsigned int rd = 0)

Set the Red value.

void SetG(unsigned int gr = 0)

Set the Green value.

void SetB(unsigned int bl = 0)

vColor 58

The V C++ GUI Reference Manual

Set the Blue value.

unsigned int r()

Get the Red value.

unsigned int g()

Get the Green value.

unsigned int b()

Get the Blue value.

int operator ==

Compare two color objects for equality.

int operator !=

Compare two color objects for inequality.

Notes about color

The color model used by V attempts to hide most of the details for using color. However, for some
applications you may end up confronting some of the sticky issues of color.

Most machinesin use in 1996 will not support all 224 colors that can be represented by the RGB color
specification. Typically, they devote 8 or 16 hitsto each pixel. This means that the 24-bit RGB colors must
be mapped to the smaller 8-bit or 16-bit range. This mapping is usually accomplished by using a palette or
colormap.

V triesto use the default system color palette provided by the machine it is running on. On some systems,
such as X, it is possible to run out of entriesin the color map. Others, like Windows, map colors not in the
color palette to dithered colors. V provides two methods to help with this problem. First,

vCol or: : Bi t sOf Col or () tellsyou how many bits are used by the running system to represent color. The
method vCol or : : Reset Col or (r, g, b) can be used to change the value of a color without using up another
entry in the system color map. For now, these methods should allow you to work with color with pretty good

vColor 59

The V C++ GUI Reference Manual

flexibility. Eventually, V may include more direct support for color palettes.

See Also

C _ColorButton, vCanvas

vColor

60

vcanvas.htm

vDC

Thisisthe base class that defines all the drawing methods provided by the various drawing canvases.

Synopsis

Header:

<v/vdc. h>
Class name:

vDC

Description

All drawing classes such asvCanvasPaneDC and vPost Scr i pt DC are derived from this class. Each drawing
class will support these methods as needed. Not all drawing classes have the same scale, and printer drawing
canvases provide extra support for paging. Y our code will not normally need to include vdc. h.

See the specific sections for details of drawing classes. vCanvasPaneDC, vMenor yDC, vPr i nt DC, and
Drawing.

Utility Methods

virtual void BeginPage()

Supported by printer canvases. Call to specify a page is beginning. Bracket pages with Begi nPage and
EndPage calls.

virtual void BeginPrinting()

Required by printer canvases. Call to specify a document is beginning. Y ou must bracket documents with
Begi nPrinting and EndPri nti ng calls. Begi nPri nti ng includes an implicit call to Begi nPage.

vDC 61

vcpdc.htm
vmemdc.htm
vprintdc.htm
drawing.htm

The V C++ GUI Reference Manual

virtual void Clear()

Clear the canvas to the background color. No op on printers.

virtual void ClearRect(int x, int y, int width, int height)

Clear arectangular area starting at x,y of height and width. No op on printers.

void CopyFromMemoryDC(vMemoryDC* memDC, int destX, int destY, int srcX =0, int srcY =
0, int srcW =0, int srcH =0)

This method is used to copy the image contained in avMenor yDC to another drawing canvas. The parameter
menDC specifies the viMenor yDC object, and dest X and dest Y specify where the image isto be copied into

t hi s drawing canvas (which will usually be 0,0). If you use the default values for sr cX=0, srcY=0, sr cW-0,
and sr cH=0, the entire source canvas will be copied.

Beginning with Vrelease 1.13, CopyFr onivenor yDC provides the extra parameters to specify an area of the
source to copy. Y ou can specify the source origin, and its width and height. The default values for these allow
backward call and behavior compatibility.

One of the most useful uses of thisisto draw both the canvas pane drawing canvas, and to amemory drawing
canvas, and then use CopyFr omMenor yDC to copy the memory canvas to the canvas pane for Redr aw events.

virtual void DrawAttrText(int x, int y, char* text, const ChrAttr attr)
Draw text using the current font with specified attributes at given x, y.

ChrAttr attr isused to specify attributesto override some of the text drawing characteristics normally
determined by the pen and font. Specifying chNor mal means the current pen and font will be used.

ChRever se is used to specify the text should be drawn reversed or highlighted, using the current font and pen.
Y ou can also specify 16 different standard colorsto override the pen color. Y ou use ORed combinations the
basic color attributes chRed, ChBI ue, and ChGr een. Most combinations are also provided as ChYel | ow,
ChCyan, ChMagent a, ChWi t e, and ChGr ay. These colors can be combined with chDi nCol or can be used for
half bright color combinations (or you can use ChDi nRed, €tc.). Y ou can combine color attributes with
ChRever se. Attributes such as boldface, size, and underlining are attributes of the font.

virtual void DrawColorPoints(int x, int y, int nPts, vColor* pts)

Draw an array of nPt svCol or s as points starting at x,y. This method is useful for drawing graphical images,
and bypasses the need to set the pen or brush for each point. Typically, Dr awCol or Poi nt s will be
significantly faster than separate calls to Dr awPoi nt .

virtual void DrawEllipse(int x, int y, int width, int height)

Draw an dllipse inside the bounding box specified by X, y, width, and height. The current Pen will be used to
draw the shape, and the current Brush will be used to fill the shape.

vDC 62

The V C++ GUI Reference Manual

virtual void Drawlcon(int x, int y, vicon& icon)

A vl con isdrawn at X,y using the current Pen. Note that only the location of an icon is scaled. The icon will
retain itsoriginal size.

virtual void DrawLine(int x, int y, int xend, int yend)

Draw aline from x,y to xend,yend. The current Pen will be used to draw the line.

virtual void DrawLines(vLine* lineList, int count)
Drawsthe count lines contained inthelist1i neLi st.
The current Pen will be used to draw the lines.

ThetypevLi ne isdefinedinv_defs. h as:

t ypedef struct vLine

{

short x, y, xend, yend
} vlLine;
virtual void DrawLines(vPoint* points, int count)

Drawsthe count lines defined by the list of endpoints poi nts. Thisis similar to drawing with alinelist. The
value of count must be 2 or greater. (New in version 1.19)

The current Pen will be used to draw the lines.

virtual void DrawPoint(int x, int y)

Draw apoint at x,y using the current Pen.

virtual void DrawPoints(vPoint* pointList, int count)
Drawsthe count points contained in the list poi nt Li st .
The current Pen will be used to draw the points.

ThetypevPoi nt isdefinedinv_defs. h as:

t ypedef struct vPoint
{

short x, v;
} vPoint;

virtual void DrawPolygon(int n, vPoint points[], int filMode = vAlternate)

A closed polygon of n pointsis drawn. Note that the first and last element of the point list must specify the

vDC 63

The V C++ GUI Reference Manual

same point. The current Pen will be used to draw the shape, and the current Brush will be used to fill the
shape.

The fillMode parameter specifies one of two alternative filling algorithms, vAl t er nat e or vW ndi ng. These
algorithms correspond to the equivalent algorithms on the native platforms.

ThetypevPoi nt isdefinedinv_defs. h as:

t ypedef struct vPoint /1 a point
{
short x, vy; /'l X version
} vPoint;

virtual void DrawRoundedRectangle(int x, int y, int width, int height, int radius = 10)
Draw arectangle with rounded corners at x,y of size width and height. The radius specifies the radius of the
circle used to draw the corners. If aradius of lessthan O is specified, the radius of the corners will be

((width+height)/-2* radius) which gives amore or less reasonable ook for various sized rectangles. The
current Pen will be used to draw the shape, and the current Brush will be used to fill the shape.

virtual void DrawRectangle(int x, int y, int width, int height)
Draw arectangle with square corners at x,y of size width and height. The current Pen will be used to draw the
shape, and the current Brush will be used to fill the shape.

virtual void DrawRectangles(vRect* rectList, int count)

Draw alist of count vRect rectangles pointed to by thelist r ect Li st . The current Pen will be used to draw
the rectangles, and the current Brush will be used to fill the rectangles.

ThetypevRect isdefinedinv_defs. h as.

t ypedef struct vRect
{

short x, y, w, h;
} vRect;

virtual void DrawRubberLine(int x, int y, int xend, int yend)

Draw arubber-band line from X, y to xend, yend. This method is most useful for showing lines while the
mouse is down. By first drawing arubber line, and then redrawing over the same line with

Dr awRubber Li ne causes the line to be erased. Thus, pairs of rubber lines can track mouse movement. The
current Pen is used to determine line style.

virtual void DrawRubberEllipse(int x, int y, int width, int height)

Draw arubber-band Ellipse. See DrawRubberLine.

vDC 64

The V C++ GUI Reference Manual

virtual void DrawRubberPoint(int x, int y)

Draw arubber-band point. See DrawRubberLine.

virtual void DrawRubberRectangle(int x, int y, int width, int height)

Draw arubber-band rectangle. See DrawRubberLine.

virtual void DrawText(int x, int y, char* text)

Simple draw text at given X, y using the current font and current pen. Unlike icons and other V drawing
objects, x and y represent the lower left corner of the first letter of the text. Using avSol i d pen resultsin the
text being drawn in with the pen's color using the current background color. Using avTr anspar ent pen
resultsin text in the current color, but just drawing the text over the current canvas colors. (See
vPen: : Set Styl e.)

virtual void EndPage()

Supported by printer canvases. Call to specify apage is ending. Bracket pages with Begi nPage and
EndPage calls.

virtual void EndPrinting()

Supported by printer canvases. Call to specify a document is ending. Bracket documents with

Begi nPrinting and EndPri nti ng calls. EndPri nti ng includes an implicit call to EndPage.

virtual vBrush GetBrush()

Returns a copy of the current brush being used by the canvas.

virtual vFont GetFont()

Returns a copy of the current font of the drawing canvas.

virtual vBrush GetPen()

Returns a copy of the current pen being used by the canvas.

virtual int GetPhysHeight()

Returns the maximum physical y value supported by the drawing canvas. Especially useful for determining
scaling for printers.

vDC 65

The V C++ GUI Reference Manual

virtual int GetPhysWidth()

Returns the maximum physical x value supported by the drawing canvas. Especially useful for determining
scaling for printers.

virtual void GetScale(int& mult, int& div)

Returns the scaling factors for the canvas. See Set Scal e.

void GetTranslate(int& x, int& y)

int GetTransX()

int GetTransY()

Returns the current x and y tranglation values.

virtual void SetBackground(vColor& color)

This sets the background of the drawing canvas to the specified color.

virtual void SetBrush(vBrush& brush)

This sets the brush used by the drawing canvas. Brushes are used for the filling methods such as

vDr awPol ygon. It isimportant to call Set Br ush whenever you change any attributes of a brush used by a
drawing canvas.

virtual void SetFont(vFont& vf)

Change the font associated with this canvas. The default method handles changing the font and calls the
FontChanged method for the canvas pane.

virtual void SetPen(vPen& pen)

Sets the current pen of the canvas to pen. Pens are used to draw lines and the outlines of shapes. Itis
important to call set Pen whenever you change any attributes of a pen used by a drawing canvas.
virtual void SetScale(int mult, int div)

Sets the scaling factor. Each coordinate passed to the drawing canvas is first multiplied by mult and then

divided by div. Thus, to scale by onethird, set mult to 1 and div to 3. Many applications will never have to
worry about scaling. Note that scaling applies to output only. The mouse events will provide unscaled

vDC 66

The V C++ GUI Reference Manual

coordinates, and it is up to your code to scale mouse coordinates appropriately.

void SetTranslate(int x, int y)

void SetTransX(int x)

void SetTransY(int y)
These methods set the internal translation used by the drawing canvas. Each coordinate sent to the various
drawing methods (e.g., Dr awRect angl e) will be trandated by these coordinates. This can be most useful

when using the scroll bars to change which part of adrawing is visible on the canvas. Y our application will
have to handle proper mapping of mouse coordinates.

int TextHeight(int& ascent, int& descent)
This function returns the total height of the font f ont 1 d. The total height of the font is the sum of the

ascent and descent heightsof the font f ont | d. Each character ascends ascent pixelsabovethe Y
coordinate where it is being drawn, and descent pixels below the Y coordinate.

int TextWidth(char* str)

Returns the width in pixels or drawing points of the string st r using the currently set font of the canvas.

vDC

67

vDebugDialog

Utility class to access debugging messages.

Synopsis

Header:
<v/ vdebug. h>
Class name:
vDebugDiaog
Hierarchy:

vModal Dialog ->vDebugDiaog

Description

V provides built in debugging features. Most of the V classes contain debugging messages that are displayed
on st derr or aspecial debugging information window. For Unix systems, st der r is usually the xterm
window used to launch the V application.

NOTE: vDebugDialog is NOT currently implemented for Windows WIN32. Thiswill be changed in the near
future.

Severa categories of debugging messages have been defined by V, and display of messages from different
categoriesis controlled by the vDebugDi al og class.

V provides several macros that can be used to insert debugging messages into your code. These are of the
form sysDebugN for system code, and User DebugN for your code. Display of these messagesis controlled by
the vDEBUG symbol, and the settings of the vDebugDi al og class.

Y ou define an error message using a User Debug macro. Y our message is aformat string using the
conventions of spri nt f. You can have none to three values by using the corresponding User Debug through
User Debug3 macros. Each macro takes a debug type, a message, and any required values for the message
format string. For example, User Debug(M sc, "nyd ass: %\ n", val) will print the message

“myClass: xx" when it is executed and the M sc debug message type is enabled.

If vDEBUGs hot defined, your debugging messages will be null macros, and not occupy any code space. If
vDEBUG is defined, then your messages will be conditionally displayed depending on their type.

vDebugDialog 68

The V C++ GUI Reference Manual

By default, V starts with the Syst emcategory Badval s on, and all three User categories on. Unix versions of
V\ support acommand line option that allows you to enable each option using the - vDebug command line
switch. You include the switch - vDebug on the command line, followed by a single argument value made up
of letters corresponding to the various debugging categories. If - vDebug is specified, al debugging categories
except those specified in the value are turned off. The value for each category islisted in its header. For
example, using the switch - vDebug Sucbmwould enable debugging messages for both Syst emand

User constructors and destructors, aswell as Syst emmouse events. Note that the values are case sensitive.

Debugging Categories

Each of the following debug categories can be set or unset using the vDebugDi al og class. These category
names are to be used as the first argument to the User Debug macro.

*System (-vDebug S)

These are the messages defined using the SysDebug macro. These messages can sometimes be useful to
determineif you are using the classes properly. The constructor, destructor, and command events are often
the most useful system debug messages. Turning this off will disable all system messages.

*User (-vDebug U)

These are the messages defined using the User Debug macros. Turning this off will disable all user messages,
while turning it on enables those user messages that have been enabled.

*CmdEvents (-vDebug c)

This category corresponds to command events, which include menu picks and dialog command actions.
*MouseEvents (-vDebug m)

This category corresponds to mouse events, such as a button click or amove.

*WindowEvents (-vDebug w)

This category corresponds to window events, such as aresize or redraw.

*Build (-vDebug b)

This category corresponds to actions taken to build a window, such as adding commands to a dialog.
*Misc (-vDebug 0)

Thisisacatch all category used for miscellaneous system messages. The o vDebug stands for other. Y ou
should probably use a UserAppN category for your miscellaneous messages.

*Text (-vDebug t)
These messages are primarily used by the vText CanvasPane class, and are useful for debugging text display.

vDebugDialog 69

The V C++ GUI Reference Manual

*BadVals (-vDebug v)

These messages are generated when a bad parameter or illegal value is detected. These can be most useful.
*Constructor (-vDebug C)

These messages are displayed whenever a constructor for an object is called. These messages can be very
useful for tracking object creation bugs. Y ou should try to have User Debug(Construct or, " X: : X
constructor") messages for all of your constructors, and a corresponding Destructor message.
*Destructor (-vDebug D)

M essages from an object destructor.

*UserAppl, UserApp2, UserApp3 (-vDebug 123)

These are provided to allow you up to three categories of your own debugging messages.

Example

To use the V debugging facilities, it is usually easiest to add a Debug command to a menu item - controlled
by the vDEBUG symbol. Then add callsto User Debug as needed in your code. This example shows how to
define a Debug menu item, and then invoke the vDebugDi al og to control debugging settings.

#i ncl ude <v/vdebug. h62;

vMenu FileMenu[] =

{
#i fdef vDEBUG
{"-", M.Line, notSens, notChk, noKeyLbl , noKey, noSub},
{" Debug", M Set Debug, i sSens, not Chk, noKeyLbl , noKey, noSub},
#endi f
b
case M Set Debug:
{
vDebugDi al og debug(t his); /'l instantiate
User Debug(M sc, "About to show Debug dial og.\n");
debug. Set Debug() ; /'l show t he di al og
br eak;

vDebugDialog

70

vDialog

Class to build a modeless dial og.

Synopsis

Header:
<v/vdi al 0g. h>

Class name:
vDiaog
Hierarchy:
(vBaseWindow,vCmdParent) ->vDialog

Contains;

CommandObject

Description

ThevDi al og classis used to build modeless dialogs. Since most dialogs will require aresponse to the
commands they define, you will almost always derive your own subclass based on vDi al og, and override the
Di al ogCommand method to handle those commands. Note that vDi al og is multiply derived from the
vBaseW ndow and the vCrdPar ent classes.

Constructor

vDialog(vBaseWindow* parent)

vDialog(vApp* parent)

vDialog 71

cmdobj.htm

The V C++ GUI Reference Manual

vDialog(vBaseWindow* parent, int isModal = 0, char* title ="")

vDialog(vApp* parent, int isModal = 0, char* title ="")

A dialogis constructed by calling it with a pointer to avBaseWindow or vApp, which is usually the 'this' of
the object that createsthe vDi al og. Thei sModal parameter indicatesif the dialog should be modal or
modeless. Y ou would usually use the default of 0. The modal flag is used by the derived

vModal Di al og class. Thetit| e parameter can be used to set atitle for your dialog (see Set Di al ogTi t | e for
information on titles). If you create a derived dialog class, you might provide aparent andatit! e inyour
constructor, and provide the O for thei sMdal flag in the call to thevDi al og constructor.

The constructor builds an empty dialog. The AddDi al ogCnds method must be called in order to build a useful
dialog, which you would usually do from within the constructor of your derived dialog class.

IMPORTANT! When you derive your own vDi al og objects, you should write constructors for both the
vBaseW ndow* and vApp* versions. These two different constructors allow dialogs to be used both from
windows directly, and from the vApp code aswell. Normally, you would construct a dialog from awindow.
Occasionally, it will be useful to build a dialog from the vApp that applies to all windows, and not just the
window that constructed it.

void vDialog::AddDialogCmds(CommandObject* cList)

This method is used to add alist of commandsto adialog. It is called after the dialog object has been created.
Y ou can usually do thisin the constructor for your derived Dialog class. This method is passed an array of
CommandObj ect structures.

void vDialog::SetDialogTitle(char* title)

This can be used to dynamically change the title of any object derived from avbi al og object. Note that the
title will not always be displayed. This depends on the host system. For example, the user can set up their X

window manager to not show decorations on transient windows, which is how dialogs are implemented on X.
Y ou should write your applications to provide a meaningful title as they are often helpful when displayed.

Example

This example shows the steps required to use a dialog object. Note that the example usesthe vDi al og class
directly, and thus only uses the default behavior of responding to the ok button.

Saraple raodeless dialog.

#i ncl ude <v/vdi al og. h62;
CommandObj ect cmdList[] = /1 list of the commands

{C_Label, Ibl1, 0, "Label", NoList, CA Mui nMsg, i sSens, 0, 0},

vDialog 72

The V C++ GUI Reference Manual

{C Button, MOK, MK
CA _Def aul t Butt on

};

" K", Nolist,

i sSens, | bl 1, 0},
{C EndOf List,0,0,0,0,CA None, 0,0} // This ends |ist

vDi al og curDi al og(this,0,"Sanple Dialog"); // create dialog instance

cur Di al og. AddDi al ogCnds(cndLi st); /1 add the conmands

cur Di al og. ShowDi al og(" Sanpl e nodel ess dialog."); // invoke

This example creates a simple modeless dialog with alabel and an OK button placed below the label (see the
description of layout control below). showbi al og displays the dialog, and the
vDi al og: : Di al ogConmand method will be invoked with theid (2) and value (M oK) of the OK button when it

is pressed.

Use theviMbdal Di al og classto define modal dialogs.

The Commandbj ect structure includes the following:

typedef struct ConmmandCbj ect

{

CrdType cndType; /1
I tenval cndl d; /1
|tenval retVal; 1/
/1
char* title; /1]
voi d* itenlist; /1
/1
CndAttribute attrs; //

unsi gned
Sensitive: 1; /1
|tenval cFrane; /1]
Itemval cRi ght O /1
I tenVal cBel ow, /1
int size; /1
char* tip; 1/

} Comuandbj ect ;

what kind of itemis this

unique id for the item

initial value
depends on type of conmand

string for label or title

alist of stuff to use for the cnd
depends on type of conmand

list of attributes of comand

if itemis sensitive or not
if itempart of a frame
Item placed left of this id
Item pl aced bel ow this one
Used for size information
tool tip string

Placements of command objects within the dialog box are controlled by the cRi ght O and cBel owfields. By
specifying where an object goes in relation to other command objectsin the dialog, it is simpleto get avery
pleasing layout of the dialog. The exact spacing of command objectsis controlled by thevDi al og class, but
the application can used C_Bl ank command objects to help control spacing.

The various types of command objects that can be added include (with suggested id prefix in parens):

C EndCf Li st : Used to denote end of command |i st

C Bl ank: filler to help RightOfs, Bel ows work (blk)
C BoxedLabel: a label with a box (bxl)

C Button: Button (btn)

C_CheckBox: Checked | tem (chk)

C Col orButton: Colored button (cbt)
C Col orLabel: Colored | abel (clb)

C_ConboBox: Popup conmbo list (cbx)
C _Frane: General purpose frame (frm
C_lcon: a display only lcon (ico)

C lconButton: a command button Icon (ich)

C Label : Regul ar text

vDialog

| abel (1bl)

73

The V C++ GUI Reference Manual

C List: List of itens (Ist)
C ProgressBar: Bar to show progress (pbr)
C_Radi oButton: Radi o button (rdb)

C Slider: Slider to enter value (sld)
C_Spi nner: Spi nner val ue entry (spn)

C TextlIn: Text input field (txi)

C Text: W appi ng text out (txt)

C Toggl eButton: a toggle button (tht)
C Toggl eFrame: a toggle frame (tfr)
C Toggl el conButton: a toggle lIcon button (tib)

These command values are passed to the vDi al og: : Di al ogConmand function, which you override to
interpret commands.

virtual void CancelDialog()

This method is used to cancel any action that took place in the dialog. The values of any itemsin the dialog
arereset to their original values, and the This method is automatically invoked when the user selects a button
with the value M Cancel and the Di al ogCommand method invoked as appropriate to reset values of check
boxes and so on. Cancel Di al og can aso be invoked by the application code.

virtual void CloseDialog()

The d oseDi al og isused to closethe dialog. It can be called by user code, and is automatically invoked if
the user selectsthe M Done or M_OK buttons and the the user either doesn't override the bi al ogConmand or
callsthe default Di al ogConmand from any derived Di al ogConmand methods.

virtual void DialogCommand(ltemVal Id, ItemVal Val, CmdType Type)

This method is invoked when a user selects some command item of the dialog. The default
Di al ogCommand method will normally be overridden by a user derived class. It is useful to call the default
Di al ogCommand from the derived method for default handling of the M Cancel and M_OK buttons.

The d parameter is the value of the cmdi d field of the Commandbj ect structure. The val parameter isthe
ret Val value, and the Type isthe cmdType.

The user defined Di al ogConmand iswhere most of the work defined by the dialog is done. Typically the
derived Di al ogComand will have aswi t ch statement with acase for each of the command cndl d values
defined for itemsin the dialog.

void DialogDisplayed()

This method is called by the V runtime system after a dialog has actually been displayed on the screen. This
method is especially useful to override to set values of dialog controls with Set val ue and Set St ri ng.

It isimportant to understand that the dialog does not get displayed until ShowDi al og or

ShowMbdal Di al og has been called. There is avery important practical limitation implied by this, especially
for modal dialogs. The values of controls cannot be changed until the dialog has been displayed, even
though thevDi al og object may exist. Thus, you can't call Set Val ue or Set St ri ng until after you call

vDialog 74

The V C++ GUI Reference Manual

ShowDi al og for modeless dialogs, or ShowMbdal Di al og for modal dialogs. Since ShowMbdal Di al og does not
return until the user has closed the dialog, you must override Di al ogDi spl ayed if you want to change the
values of controlsin amodal dialog dynamically.

For most applications, thisis not a problem because the static definitions of controlsin the

CommandObj ect definition will be usually be what is needed. However, if you need to create a dialog that has
those values changed at runtime, then the easiest way is to include the required Set Val ue and

Set St ri ng calsinside the overridden Di al ogDhi spl ayed.

void GetDialogPosition(int& left, int& top, int& width, int& height)

Returns the position and size of t hi s dialog. These values reflect the actual position and size on the screen of
the dialog. The intent of this method isto allow you to find out where adialog is so position it so that it
doesn't cover awindow.

virtual int GetTextIn(ItemVal Id, char* str, int maxlen)

This method is called by the application to retrieve any text entered into any C_Text | n itemsincluded in the
dialog box. It will usually be caled after the dialog is closed. You call Get Text | n with the d of the Textln
command, the address of abuffer (st r), and the size of str in maxl en.

virtual int GetValue(ltemVal Id)

This method is called by the user code to retrieve values of command items, usually after the dialog is closed.
The most typical useisto get theindex of any item selected by the user inaC_Li st or C_ConboBox.

int IsDisplayed()

Thisreturnstrue if the dialog object is currently displayed, and falseif itisn't. Typically, it will make sense
only to have asingle displayed instance of any dialog, and your code will want to create only one instance of
any dialog. Since modal dialogs allow the user to continue to interact with the parent window, you must
prevent multiple calls to showbi al og. One way would be to make the command that displays the dialog to be
insensitive. | sDi spl ayed() isprovided as an alternative method. Y ou can check the | sDi spl ayed() status
before calling Showbi al og.

virtual void SetDialogPosition(int left, int top)

Movest hi s dialog to thelocation| ef t and t op. This function can be used to move dialogs so they don't
cover other windows.

virtual void SetValue(ltemVal Id, ItemVal val, ItemSetType type)

This method is used to change the state of dialog command items. The | t enBet Type parameter is used to

control what is set. Not all dialog command items can use al types of settings. The possibilities include:

vDialog 75

The V C++ GUI Reference Manual

Checked The checked typeis used to change the checked status of check boxes. V will normally handle
checkboxes, but if you implement a command such as Check All, you can use Set Val ue to change the check
state according to I t enval val .

Sensitive The Sensi ti ve typeisused to change the sensitivity of a dialog command.

Value The val ue typeisused primarily to preselect the item specified by I t enval val inalist or combo
box list.

Changelist, ChangelListPtr Lists, Combo Boxes, and Spinnersusethei t enli st field of the defining
CommandQbj ect to specify an appropriate list. Set Val ue provides two waysto change the list values
associated with these controls.

The key to using ChangelLi st Pt r and ChangeLi st isan understanding of just how the controls usethe list.
When alist type control isinstantiated, it keeps a private copy of the pointer to the original list as specified in
thei tenLi st field of the defining Commandbj ect .

So if you want to change the original list, then ChangeLi st isused. The original list may be longer or shorter,
but it must be in the same place. Remember that aNULL entry marks the end of the list. So you could
allocate a 100 item array, for example, and then reuse it to hold O to 100 items.

Call set val ue witht ype set to ChangelLi st . Thiswill cause the list to be updated. Note that you must not
changetheit enLi st pointer used when you defined the list or combo box. The contents of the list can
change, but the pointer must be the same. Theval parameter isnot used for Changeli st .

Sometimes, especialy for regular list controls, a statically sized list just won't work. Using

ChangelLi st Pt r allowsyou to use dynamically created list, but with asmall coding penalty. To use
ChangelLi st Pt r, you must first modify the contents of thei t enii st field of the original

CommandQObj ect definition to point the the new list. Then call Set Val ue with ChangelLi st Pt r . Note that this
will both update the pointer, and update the contents of thelist. Y ou don't need to call again with
Changeli st .

The following illustrates using both types of list change:

char* conboList[] = {

"Bruce", "Katrina", "Risa", "Van", 0 };
char* list1[] = {"1", "2", "3", 0};
char* list2[] = {"A", "B", "C', "D', 0};

/1 The definition of the dialog

CommandObj ect Li st Exanpl e[] = {
{ C_ConboBox, 100, 0,"", (voi d*) conboLi st, CA_None, i sSens, 0, 0, 0},
{C_List,200,0,"",(void*)Ilistl, CA None,isSens,O0,O0, 0},

}
/1 Change the contents of the conbo |ist
conboList[0] = "Wanpler"; // Change Bruce to \Wanpl er

Set Val ue(200, 0, ChangelLi st);

/1 Change to a new list entirely for |ist
/1 Note that we have to change ListExanple[1l], the

vDialog 76

The V C++ GUI Reference Manual

/1 original definition of the Iist control.
Li st Exanpl e[1] .itenlist = (void*)list2; // change to list2
Set Val ue(100, 0, ChangelLi stPtr);

Note that this example uses static definitions of lists. It is perfectly fine to use completely dynamic lists: you
just have to dynamically fill in the appropriatei t enii st field of the defining Commandbj ect .

Please see the description of Di al ogDi spl ayed for an important discussion of setting dialog control values.
virtual void SetString(ltemVal Id, char* str)

This method is called to set the string values of dialog items. This can include the labels on check boxes and
radio buttons and labels, as well as the text value of a Text item.

Please see the description of Di al ogDi spl ayed for an important discussion of setting dialog control values.
virtual void ShowDialog(char* message)

After the dialog has been defined, it must then be displayed by calling the Showbi al og method. If a

C Label wasdefined with aCA_Mai nMsg attribute, then the message provided to Showbi al og will be used
for that label.

ShowDi al og returnsto the calling code as soon as the dialog is displayed. It is up to the
Di al ogCommand method to then handle command input to the dialog, and to close the dialog when done.

Please see the description of Di al ogDi spl ayed for an important discussion of setting dialog control values.

Derived Methods

None.

Inherited Methods

None.

See Also

vModalDialog

vDialog 77

vmodald.htm

VFileSelect

A utility classto select or set afile name.

Synopsis

Header:

<v/vfilesel.h>

Class name:
vFileSelect
Hierarchy:

vModalDialog ->VFileSelect

Description

This utility class provides a dialog interface for selecting filenames. It can be used either to select an input
file name, or verify or change an output file name. This utility does not open or ater files- it smply
constructs alegal file name for use in opening afile.

Methods

vFileSelect(vBaseWindow* win)
vFileSelect(vApp* app)

ThevFi | eSel ect constructor requires a pointer to avBaseW ndow, which includes all V windows and
dialogs, or apointer to the vApp object. You will usualy passthet hi s to the constructor.

int FileSelect(const char* prompt, char* filename, const int maxLen, char** filterList, int&
filterindex)

vFileSelect 78

The V C++ GUI Reference Manual

int FileSelectSave(const char* prompt, char* filename, const int maxLen, char** filterList,
int& filterindex)

You provide apr onpt for the user, such as “"Open File." The user then uses the dialog to select or set afile
name. Fi | eSel ect returns Tr ue if the user picked the OK button, and Fal se if they used the Cancel button.

The filename will befilled into thefi | enane buffer of maximum length maxLen. The full path of the file
will be included with the file name.

You can aso provide alist of filter patternsto filter file extensions. If you don't provide afilter list, the
default filter of ~™*" will be used. Each item in the filter list can include alist of file extensions separated by
blanks. Y ou can provide several filtering options. The first filter in the list will be the default. Only leading
“*" wild cards are supported.

Thefilterlndex reference parameter isused to track which filter the user selected. After

Fi |l eSel ect returns, filterl ndex will be set to the index of the filter list that the user last selected. For the
best interface, you should remember this value for the next time you call Fi | eSel ect with the same filter list
so that the user selected filter will be preserved.

You should useFi | eSel ect to open anew or existing file. If the user is being asked to save afile (usually
after picking a Save As menu choice), use the Fi | eSel ect Save method. On some platforms, there will be no
difference between these two methods (X, for example). On other platforms (Windows, for example),
different underlying system provided file dialogs are used. To your program, there will be no differencein
functionality.

Example

The following is asimple example of using vFi | eSel ect .

Open file
File:l |
Dir: ‘home/brucely
} Filter:
bin/ CE |~
doc/
examnp’
makefile II
static char* filter[] = /1 define a filter |ist
{
xR [l all files
"rotxt", /1l .txt files
"* c *.cpp *.h", /'l C sources
0
}s
static int filterlndex = 0; /1 to track filter picked

vFileSelect 79

The V C++ GUI Reference Manual

char nane[100];
VFil eSel ect fsel (this); /1 instantiate
int oans = fsel.FileSelect("Open file",name,99,filter,filterlndex);
vNot i ceDi al og fsnote(this); // make an instance
if (oans *nane)
(voi d)fsnote. Noti ce(nane);

el se
(void)fsnote. Notice("No file nane input.");

vFileSelect

80

vFont

Various screen fonts are availablein V.

Synopsis

Class:

vFont

Header:

<v/vfont.h>

Description

Fonts are difficult to make portable. V has adopted a font model that is somewhat portable, yet allows you to
take advantage of various fonts available on different platforms. In fact, it is possible to write your programs
to usethe vFont Sel ect dialog class, and pretty much ignore many of the details of selecting fonts. The main
characteristics of fonts your program will have to deal with are the height and width of text displayed on a
canvas. These values are provided by vDC: : Text Hei ght and vDC: : Text W dt h. Use these values to calculate
how much space atext string will take up on the screen or page.

Fonts are associated with drawing canvases. For example, the vCanvasPane: : Set Font method is used to set
the font used by the canvas pane. The sizes of the actual fonts will probably differ on different kinds of
canvases. Specifically, your program should not depend on getting the same Text W dt h value for screen and
printer canvases for the same font.

TheclassvFont isused to define font objects, and the characteristics of the font are set either by the class
constructor when the font isinstantiated, or by using thevFont :: Set Font Val ues method. The utility class
vFont Sel ect can be used to interactively set font characteristics. The characteristics associated with a font
are described in the following sections. Remember, however, that vFont Sel ect : : Font Sel ect can be used to
set these attributes.

Font Family

Each font belongs to a font family. There are eight font families defined by V with the vFont I D attribute of
the font object. Font families typically correspond to some typeface name such as Helvetica or Times Roman,
but use more generic names. There are three system fonts, vf Def aul t Syst em vf Def aul t Fi xed, and

vf Def aul t Var i abl e. These default fonts are defined by the specific platform. vf Def aul t Syst emwill

vFont 81

vfontsel.htm

The V C++ GUI Reference Manual

usually be afixed space font, and is often settable by the user. On X, for example, the default system font can
be changed by using a-f n f ont nane switch when starting the application. The vf Def aul t Syst emfont will
have fixed attributes, and will not be changeable by the program. The vf Def aul t Fi xed (fixed spacing) and
vf Def aul t Vari abl e (variable spacing) fonts are also system specified, but can usually have their attributes,
such as size and weight changed.

V also supports five other font families. The vf Seri f font is a seriffed font such as Ti nes Roman. The

vf SanSeri f isaseriflessfont such asswi ss or Luci di a. Both of these are variable spaced fonts. The

vf Fi xed is afixed space font, often called Couri er on the host platform. The vf Decor at i ve font usually
contains symbols or other drawing characters. It is not very portable across platforms. Finally, V supports a
font family called vf & her . Thisis used when the system supports other fonts that are selectable viathe

vFont Sel ect dialog class. Windows supports awide variety of fonts, while X does not support any
additional fonts.

Font Style

V supports two kinds of font styles: vf Nor mal for normal fonts, and vf 1 t al i ¢ for italic fonts.

Font Weight

V supports two kinds of font weights: vf Nor mal for normal weight fonts, and vf Bol d for boldface fonts.

Point Size

V supports awide range of point size, usually ranging from 8 point to 40 or 72 point fonts. Not al point sizes
are supported on each platform. How each point size maps to space on the screen or page also vary from
platform to platform.

Underlining

Y ou can also specify that afont is underlined.

Angled text

Y ou can specify that afont isto be drawn at something other than horizontally, left to right. If you need a
vertical font, for agraph perhaps, you can specify an angle in the font constructor. This means you must use
one of V's standard fonts, and can't use the font select dialog. Y ou aso can't dynamically change the angle
on thefly. If you need text at more than one angle, you need to create multiple instances of a vFont.

Y ou specify the angle in degrees, with 0 representing standard horizontal text. Using 90 degrees gives
vertical text, reading from bottom to top. Using 180 gives upside down horizontal text, and 270 gives vertical

vFont 82

The V C++ GUI Reference Manual

text, top to bottom. A simple example:

vFont font90(vfSansSerif, 10, vf Nor nal , vf Nor mal , 0, 90) ;
nyCanvas- 62; Set Font (f ont 90) ;
nyCanvas- 62; Dr awText (200, 150, "Vertical Text");

The Windows version supports any arbitrary angle. The X version only supports 90, 180, and 270. Because X
does not provide native support for non-horizontal text, the initial implementation of angled text (V Version
1.18) simulates angled text by drawing standard horizontal characters vertically or backwards. It doesn't ook
too bad, and is better than having to do it yourself. Real vertical text will probably be supported someday, and
I will probably forget to remove this note when that happens, so go by the release notes.

Methods

vFont(vFontID fam = vfDefaultFixed, int size = 10, vFontID sty = vfNormal, vFontID wt =
vfNormal, int und =0, int angle = 0)

The constructor is used to declare afont with the specified family, size, style, weight, underline, and angle.

vFontID GetFamily()

Returns the family of the font object.

int GetPointSize()

Returns the point size of the font object.

vFontID GetStyle()

Returns the style of the font object.

vFontID GetWeight()

Returns the weight of the font object.

int GetUnderlined()

Returns the underline setting of the font object.

void SetFontValues(vFontID fam = vfDefaultFixed, int size = 10, vFontID sty = vfNormal,
vFontID wt = vfNormal, int und = 0)

vFont 83

The V C++ GUI Reference Manual

Changes the attributes of the font object. For example, the font selection dialog uses this method to change
the font attributes. Note that you can't use this method to set font angles.

vFont

84

vFontSelect

A utility classto select or set afile name.

Synopsis

Header:

<v/vfontsel.h>
Class name:

vFontSelect
Hierarchy:

vModal Dialog ->vFontSelect

Description

This class provides the Font Sel ect method to set the font being used. This class provides a platform
independent way to change fonts. Depending on the platform, the user will be able to select many or most of
the fonts available on the platform. On Windows, for example, the standard Windows font selection dialog is
be used. On X, arelatively full set of fonts are available.

Methods

vFontSelect(vBaseWindow* win)
vFontSelect(vApp* app)

ThevFont Sel ect constructor requires a pointer to avBaseW ndow, which includes all V windows and
dialogs, or apointer to the vApp object. You will usually passthet hi s to the constructor.

vFontSelect 85

The V C++ GUI Reference Manual

int FontSelect(vFont& font, const char* msg = "Select Font")

This method displays a dialog that lets the user select font characteristics. If possible, the native font selection
dialog will be used (e.g., Windows). The font dialog will display the current characteristics of the

f ont object, and change them upon successful return. A f al se return means the user selected Cancel, whilea
t r ue return means the user finished the selection with an OK.

vFontSelect 86

vicon

Used to define V icons.

Synopsis

Header:

<v/v_icon. h>
Class name:

vicon

Description

Icons may be used for ssimple graphical labelsin dialogs, aswell as for graphical command buttonsin dialogs
and command bars. See the sections vBut t on and Dialog Commands for descriptions of using icons.

Presently, V supports monochrome icons which allow an on or off state for each pixel, and color icons of
either 256 or 224 colors. The format of V monochrome iconsisidentical to the X bitmap format. Thisisa
packed array of unsigned characters (or bytes), with each bit representing one pixel. The size of theiconis
specified separately from the icon array. The V color icon format isinternally defined, and allows easy
conversion to various color file formats used by X and Windows.

Constructor

vicon(unsigned char* icon, int height, int width, int depth = 1, IconType iType = Normal)

The constructor for avi con has been designed to alow you to easily define an icon. The first parameter isa
pointer to the static icon array. (Note: vl con does not make a copy of theicon - it needs to be a static or
persistent definition in your code.) The second and third parameters specify the height and width of theicon.
The fourth parameter specifies depth. The final parameter specifies the type of the icon, which by default is
Nor nmal . If you specify Tr anspar ent for 8 or 24 bit icons, then the lower left corner pixel will be used asa
transparent color.

vicon 87

The V C++ GUI Reference Manual

Class Members

int height Thisisthe height in pixels of theicon.

int width Thisisthe width in pixels of theicon. A icon will thus require (height * width) pixels. These bits
are packed into bytes, with 0's padding the final byte if needed.

int depth For monochrome icons, thiswill be one. For color icons, the value is either 8 (for 28 or 256 colors)
or 24 (for 224 colors).

unsigned char* icon Thisis a pointer to the array of bytesthat contain theicon. V basicaly uses the format
defined by X (. xBM bitmaps for monochrome bitmaps. It uses an internal format consisting of a color map
followed by a one byte per pixel color icon description, or athree bytes per pixel color icon description.

Defining Icons

The easiest way to define an icon isto include the definition of it in your code (either directly or by an
#i ncl ude). You then provide the address of the icon data plusits height and width to theinitializer of the
vl con object.

The V distribution includes a simpleicon editor that can be used to create and edit iconsin standard

. vbmformat, as well as severa other formats. Y ou can also generate monochrome icons is with the X

bi t map utility. That program allows you to draw a bitmap, and then save the definition as C code. This code
can be included directly in your code and used in the initialization of the vl con object. If you follow the
example, you should be able to modify and play with your icons very easily.

A simple converter that converts a Windows . bnp format fileto aV. vbmV bitmap format isalso included in
the standard V distribution. There are many utilities that let you generate . brp files on both Windows and X,
so thistool easily lets you add color icons of arbitrary size. Chapter 9 has more details on bnp2vbm

The standard V distribution also contains a directory (v/ i cons) with quite afew sampleicons suitable for
using in a command bar.

Onceyou have a. vbmfile, the easiest way to add an icon to your program is to include code similar to thisin
your source:

#i ncl ude "bruce. vbnt /'l Picture of Bruce
static vlcon brucel con(bits[0], bruce_height,
bruce_wi dt h, 8);

The following sections describe the format of the unsi gned char* i con datafor 1, 8, and 24 bit V icons.

1 Bit Icons

vicon 88

The V C++ GUI Reference Manual

Icon definitions are packed into bytes. A bit value of 1 represents Black, a0 is White. The bytes are arranged
by rows, starting with the top row, with the bytes padded with leading zeros to come out to whole bytes. The
bytes are scanned in ascending order (i con[0], icon[1], €tc.). Within bytes, the bits are scanned from
LSB to MSB. A 12 bit row with the pattern BBBWABBVWBVWBWWoOUId be represented as unsi gned char row[]
= { 0x67, 0x05 };. Thisistheformat produced by the X bi t map program.

8 Bit Icons

Eight bit icons support 256 colors. Each pixel of theicon is represented by one byte. Bytes are arranged in
row order, starting with the top row. Each byte represents an index into a color map. The color map consists
of RGB byte entries. While an 8 bit icon can only have 256 colors, it can map into 224 possible colors. Thus,
each 8 bit icon must also include the color map as part of its data. The very first byte of thei con dataisthe
number of entriesin the color map minus onel (you don't have to define all 256 colors), followed by the color
map RGB bytes, followed by theicon pixels. The following is avery simple example of anicon:

//vbn8

#define color_width 16

#define col or_hei ght 12

#define col or_depth 8

static unsigned char color_bits[] = {
2, /1 3 colors in color map (2 == 3-1)
255,0,0, // byte value O maps to red
0,255,0, // 1 -62; green
0,0,255, // 2 -62; blue

/1 Now, the pixels: an rgb "flag", 3 16x4 rows

o, o, o0,o0,o0,0,0,000000,0,0,0, // RRRRRRRRRRRRRRRR
o, o,o0,0,0,000001,1,1,1,1,0, // RRRRRRRRRRBBBBBR
o, o,o0,0,0,0,0,000,1,1,1,1,1,0, // RRRRRRRRRRBBBBBR
o, o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0, // RRRRRRRRRRRRRRRR
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // GCEEEEEEEEEEEEEEE
1,1,1,2,1,2,1,21,1,21,1,1,1,1,1,1, // GEECEEEEEEEEEEEGE
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // GCCEEEEEEEEEEEEEG
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // GCEEEEEEEEEEEEEG
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, |/ BBBBBBBBBBBBBBBB
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, |/ BBBBBBBBBBBBBBBB
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, |/ BBBBBBBBBBBBBBBB
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 |/ BBBBBBBBBBBBBBBB

b

static vlicon colorlcon(bits[0], color_height, color_width
col or _dept h);

24 Bit lcons

Twenty-four bit icons are arranged in rows, staring with the top row, of three bytes per pixel. Each 3 byte
pixel value represents an RGB value. Thereis no color map, and the RGB pixel values start immediately in
theunsi gned char* i con dataarray. Thisisasimple example of a24 bit icon.

[/ vbnR4

#def i ne
#def i ne
#def i ne

c24_hei ght
c24_width 6
c24_depth 24

9

static unsigned char c24_bits[] = {

vicon 89

The V C++ GUI Reference Manual

255, 0,0, 255, 0, 0, 255, 0, 0, 255, 0, 0, O, 255, 0, O, 255, O,
255, 0,0, 255, 0, 0, 255, 0, 0, 255, 0, O, O, 255, O, 0, 255, O,
255, 0,0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255, 0, O,
0, 255, 0, 0, 255, 0, O, 255, 0, O, 255, 0, O, 255, 0, O, 255, O,
0, 255, 0, 0, 255, 0, O, 255, 0, O, 255, 0, 0, 255, 0, 0, 255, O,
0, 255, 0, 0, 255, 0, O, 255, 0, O, 255, 0, O, 255, 0, O, 255, O,
0,0, 255, 0,0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255
0, 0, 255, 0, 0, 255, 0, 0, 255, 0, O, 255, 0, O, 255, O, 0, 255
0, 0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255, 0, 0, 255

/1 RRRRGG
/ | RRRRGG
/ / RRRRRR
jyiceeeee
jFiceeeee
/1 GEEEEG
/ | BBBBBB
/ | BBBBBB
/ | BBBBBB

b
static vlicon c24lcon(bits[0], c24_height, c24_wi dth,
c24_depth);
Example

This example uses the definition of the checked box used by the Athena checkbox dialog command.

/'l This code is generated by the V Icon Editor:

/1 vbml

#define checkbox_wi dth 12

#defi ne checkbox_hei ght 12

#define checkbox_depth 1

static unsigned char checkbox_bits[] = {
oxff, OxOf, 0x03, OxOc, Ox05, OxOa, 0x09, 0x09
0x91, O0x08, 0x61, 0x08, 0x61, 0x08, 0x91, 0x08
0x09, 0x09, 0x05, 0x0a, 0x03, O0x0c, Oxff, OxOf};

/] This code uses the above definitions to define an icon

// in the initializer of checklcon to vlcon.

static vlcon checkl con(bits[0],
checkbox_hei ght, checkbox_w dth, checkbox_depth);

Transparent Icons

Beginning with V 1.21, V supports transparent 8 and 24 bit icons on MS-Windows. They should be added to
0S/2 and X inthe future. If you specify Tr anspar ent for the IconTypein thevi con constructor, then V will
treat the icon as having a transparent background. The pixel in the lower left corner is used for the transparent

color. Transparent icons make much nicer icon buttons.

See Also

C_Buitton, Dialog Commands, C_Icon and C_IconButton

vicon

90

commands.htm
commands.htm

vMemoryDC

A memory drawing canvas.

Synopsis

Header:
<v/ vmendc. h>
Class name:

vMemoryDC

Description

This drawing canvas can be used to draw to memory. Like all drawing canvases, the available methods are
described in vDC. A very effective technique for using amemory canvasisto draw to both the screen canvas
pane and a memory canvas during interactive drawing, and use the memory canvas to update the screen for
Redr aw events. Thisis especialy useful if your application requires extensive computation to draw a screen.

Methods

vMemoryDC(int width, int height)

The constructor is used to construct amemory DC of the specified width and height. This can be anything
you need. If you are using the memory DC to update the screen for Redr aw events, then it should be
initialized to be big enough to repaint whatever you will be drawing on the physical screen. The methods
vApp: : ScreenW dt h() and vApp: : Scr eenHei ght () can be used to obtain the maximum size of the physical
screen.

The method CopyFr omveror yDC is used to copy the contents of a memory DC to another DC. This can be
another memory DC, but will usually be a canvas pane DC.

vMemoryDC 91

vdc.htm

vMenu

Used to define pull down menus.
Synopsis
Header:
<v/vnenu. h>

Type name:

vMenu

Description

ThevMenu structure is used to define pulldown menus, which includes the top level items on the menu bar, as

well as the items contained in the pulldown menus off the menu bar. The vMenu structure is also used to
define menus for vPopupMenu menus. viMenu structs are passed to the constructor of vMenuPane or

vPopupMenu objects.

See the section vPane for ageneral description of panes.

Definition

t ypedef struct vMenu

{

char* | abel ; /1 The | abel on the nmenu

Itemval nenul d; /1 A User assigned unique id

unsi gned

sensitive : 1, /1 1f itemis sensitive or not
checked : 1; /1 If itemis checked or not (*)
char* keylLabel ; /1 Label for an accelerator key (*)

vKey accel ; /'l Val ue of accel erator key

vMenu* SubMenu; /] Ptr to a subnenu

unsigned int kShift; // Shift state of accelerator
} Menultem

Note that the items marked with an asterisk (checked and keyLabel) are not used when defining the top level

menu bar items.

vMenu

92

vpopmenu.htm

The V C++ GUI Reference Manual

Structure Members

char* | abe

The label on the menu. See the description of the vomdwW ndow class for information on setting the label of
menu bar items.

For some platforms (Windows, but not Athena X), you can add a & to indicate a shortcut for the command.
For example, specifying alabel &Fi | e allows Windows usersto pull down theFi | e menu by pressing Al t - F,
and specifying a submenu label as &New allows the user to use Al t - N to select the New command. The Athena
version of V stripsthe &, so you can (and probably should) denote shortcuts for menu items even in Athena
versions.

|tenval Menuld

A user assigned uniqueid. Thisid is passed to the MenuConmand (or W ndowConmand) method when a menu
item is selected. If amenu item with a submenu is selected, V will not return the id, but will cause the
submenu to be displayed.

It will be common practice to use the same id for menu items and command objects defined on a command
bar, and the same id value would then be passed to W ndowConmand for either the menu selection or the
equivalent button selection. Similarly, using the id to set the item's sensitivity will change both the menu and
the button.

The values you use for your id in menus and controls should be limited to being less than 30,000. The
predefined V values are all above 30,000, and are reserved. There is no enforcement of this policy. It isup to
you to pick reasonable values.

If you want a separator line on a pulldown menu, you must use the predefined value M _Li ne for the Menul d.

int sensitive

Controlsif itemisinitially sensitive or not. Insensitive items are displayed grayed out. The predefined
symbolsnot Sens and i sSens can be used to define the Menul t em Note that V uses the static definition of
the Menul t emto store the current sensitive state, and all menus (or windows) sharing the same static
definition will have the same sensitive state. See the description of the vCrdW ndow class for information on
setting the sensitivity of menu bar items.

i nt checked

The user can put a check mark in front of the label of a menu item. This convention is often used to show a
given setting isin effect. Like the sensitive member, this statically tracks the checked state. The predefined
valuesi sChk and not Chk can be used to specify thisvalue. Thisvaueis not used when defining the top level
menu bar, and you can use the predefined value not Used for that case. See the description of the

vCmdW ndow class for information on setting checked state of menu items.

char* keylLabe

Label for an accelerator key. The predefined symbol nokeyLbl can be used to indicate thereisno keyLabel .
Thisvalue is not used when defining the top level menu bar, and you can use the predefined value

vMenu 93

vcmdwin.htm
vcmdwin.htm

The V C++ GUI Reference Manual

not Used accelerator key.

vKey accel

Thisisthe value of the keystroke that is the accelerator for this menu item. When the user presses this key,
the vwW ndow: : MenuConmand method will be called just as though the user had used the mouse to select the
menu item. This value may be used in combination with the kshi ft and keyLabel parameters. Seethe
explanation of vw ndow: : KeyI n for a complete explanation of key codes.

Note that the Windows version really doesn't support Al t key codes. The Windows system intercepts Alt
keys and triesto interpret them as menu accelerators. Unfortunately, there is no simple way to override this
behavior, so Alt keys are essentially unsupported on Windows. Using functions keys with combinations of
Shift and Control is supported, as are regular control keys.

Menul t ent SubMenu

Pointer to another Menul t emdefinition of a submenu. V will cause submenus to be shown automatically
when selected. The predefined symbol noSub can be used to indicate there is no submenu.

unsi gned int kShift

Thisisthe shift value to be used with the accel key definition. To use ¢t r | - D as the accelerator key, you
would specify the value for Control-D (easily specifiedas' D -' @) for accel , and leave kshi ft set to zero.
If you use a Ctrl code, you must specify both the control code, and the vkMm Ct r1 shift code. Note that this
valueisat the end of the viMenu structure because of it was forgotten in early implementations of V. By
placing it at the end, earlier versions of Vcode are compatible with no changes to the source. Sigh, | didn't get
this one right.

Example

This example defines a menu bar with the items File and Edit. The MenuBar definition would be passed to the
constructor of the appropriate vCndw ndow derived object.

| File Edit |

New
Open
Sawe
Save As

Exit

Only the File submenu is shown here, and is an example of the menu as it might be included in a standard
File menu. Note that this example menu includes items that can all be specified by using standard predefined
values (see Predefined ItemVals). It also includes an optionally defined Debug item. A definition like this
might be used for the Fi | eMenu in the Menu example. Note that & is used to denote shortcuts for menu items.

static vMenu FileMenu[] =
{
{", MNew, isSens, not Chk, noKeyLbl , noKey, noSub},
{", M_Open, isSens, not Chk, noKeyLbl, noKey, noSub},
{", M_Save, isSens, not Chk, noKeyLbl , noKey, noSub},

vMenu 94

stdvals.htm
stdvals.htm

The V C++ GUI Reference Manual

{"Save , M SaveAs, isSens, not Chk, noKeyLbl , noKey, noSub},
#i f def vDEBUG

{"-", M_Line, notSens, notChk, noKeyLbl , noKey, noSub},

{", M_Set Debug, i sSens, not Chk, noKeyLbl , noKey, noSub},
#endi f

{"-", M_Line, notSens, not Chk, noKeyLbl , noKey, noSub},
{"E, MExit, isSens, notChk, noKeyLbl, noKey, noSub},
{0}

}s
static vMenu EditMenu[] ={...}; [/ Define Edit pulldown

/1 Define menu bar, which includes the File and Edit pul | down
static vMenu MenuBar[] =

{

{",MFile,isSens, not Used, not Used, noKey, 0] },

{", M Edit,isSens, not Used, not Used, noKey, 0] },

{0, 0} /1 end of menubar
b

vMenuPane nmyMenuPane = new vMenuPane(MenuBar); // construct
AddPane(nyMenuPane) ;

See Also

vCmdWindow, vPane, vPopupMenu

vMenu

pane

95

vcmdwin.htm
vpane.htm
vpopmenu.htm

vModalDialog

Used to show modal dialogs.

Synopsis
Header:
<v/vnodal d. h>
Class name:
vModalDialog
Hierarchy:
(vBaseWindow,vCmdParent) ->vDialog ->vModal Dialog

Contains;

CommandObject

Description

This classis an implementation of amodal dialog. This means that the dialog grabs control, and waits for the
user to select an appropriate command from the dialog. Y ou can use any of the methods defined by the
vDi al og class, aswell asthe new ShowMbdal Di al og method.

Constructor

vModalDialog(vBaseWindow* parent, char* title)
vModalDialog(vApp* parent, char* title)

There are two versions of the constructor, one for constructing dialogs from windows, the other from the
VvApp object. See the description of the vDi al og constructor for more details.

The default value for the title is an empty string, so you can declare instances of modal dialogs without the

vModalDialog 96

vdialog.htm
cmdobj.htm

The V C++ GUI Reference Manual

title string if you wish. The dialog title will always show in Windows, but in X is dependent on how the
window manager treats decorations on transient windows.

New Methods

virtual ItemVal ShowModalDialog(char* message, ltemVal& retval)

This method displays the dialog, and does not return until the modal dialog is closed. It returnstheid of the
button that caused the return, and inr et val , the value of the button causing the return as defined in the
dialog declaration.

Please see the description of Di al ogDi spl ayed for an important discussion of setting dialog control values.

There are a couple of ways to close amodal dialog and make showivbdal Di al og return, all controlled by the
Di al ogComand method. The default Di al ogCommand will close the modal dialog automatically when the
user clickstheM Cancel , M Done, or M_OK buttons.

All command actions are still passed to the virtual Di al ogCommand method, which is usually overridden in
the derived class. By first calling vivbdal Di al og: : Di al ogConmand to handle the default operation, and then
checking for the other buttons that should close the dialog, you can also close the dialog by calling the

d oseDi al og method, which will cause the return.

The following code demonstrates this.
voi d nmyMbdal : : Di al ogConmand(|ltenVval id, Itemval val,

CmdType ctype)
{

// Call the parent for default processing
vModal Di al og: : Di al ogCommand(i d, val , ctype);
if (id == MYes || id == MNo) // These close, too.
Cl osebi al og();
}

Derived Methods

virtual void DialogCommand(ltemVal Id, ltemVal val, CmdType type)

Adds alittle functionality for handling this modally.

Inherited Methods

vDialog(vBaseWindow* parent)

vModalDialog 97

The V C++ GUI Reference Manual

vDialog(vBaseWindow* parent, int modalflag)

vDialog(vApp* parent)

vDialog(vApp* parent, int modalflag)

void vDialog::AddDialogCmds(CommandObject* cList)

virtual void CancelDialog()

virtual void CloseDialog()

virtual int GetTextIn(ItemVal Id, char* str, int maxlen)

virtual int GetValue(ltemVal Id)

virtual void SetValue(ltemVal Id, ItemVal val, ItemSetType type)

virtual void SetString(ltemVal Id, char* str)

virtual void ShowDialog(char* message)

See Also

vDiao

vModalDialog

98

vdialog.htm

vNoticeDialog

A utility classto display a message.

Synopsis

Header:

<v/vnotice. h>
Class name:

vNoticeDiaog
Hierarchy:

vModalDialog ->vNoticeDiaog

Description

Thissimple utility class can be used to display a simple message to the user. The utility displays the message,
and then waits for the user to enter to press OK.

New Methods

vNoticeDialog(vBaseWindow* win)
vNoticeDialog(VApp* app)

ThevNot i ceDi al og constructor requires a pointer to avBaseW ndow, which includes all V windows and
dialogs, or apointer to the vApp object. You will usually passthet hi s to the constructor.

void Notice(const char* prompt)

You provide apr onpt for the user. If the message contains 'backslashn' newlines, it will be shown on

vNoticeDialog 99

vmodald.htm

The V C++ GUI Reference Manual

multiple lines.

Example

The following is asimple example of using vNot i ceDi al og.

@ This is a notice.

#i ncl ude <v/vnotice. h62;

vNot i ceDi al og note(this); /1 instantiate a notice

(void)note.Notice("This is a notice.");

vNoticeDialog 100

vOS

A classto interface with the host operating system in a platform independent fashion.

Synopsis

Header:

<v/vos. h>
Class name:

vOS

Description

This classis meant to provide afairly platform independent way of interfacing with common system
dependent functions.

Methods

int vDeleteFile(const char* filename)
Deletes the specified file.
int vChDrive(int drive)

On MS-Windows, changes to the specified disk drive, where "A:"==0, "B:"==1, and so on. This method has
no effect on X.

int vGenEnvVal(char* name, char* val, int maxlen)

Returnsto val the value of the environment variable specified in nane. val has a maximum length of
max| en. Thereturn valueisf al se on failureto find the variable.

int vGetUserName(char* s, int len)

Returnsto s a system dependent string corresponding to the current User Name.

vOS 101

The V C++ GUI Reference Manual

void vGetHostName(char* s, int len)

Returnsto s a system dependent string corresponding to the host name of the system.

long vGetPid()

Returns a system dependent value corresponding to the current processid.

int vGetCWD(char* s, int len)

Returnsto s a system dependent string corresponding to the current working directory.

int vChDir(const char* path)

Changes active directory to the one specified by pat h.

int vRunProcess(const char* cmd, const char* StdOut, const char* StdErr, int Wait, int

minimize)

Thisfunction is used to start an external process. crd is used to specify the complete command line, e.g.,
"prog -sx.tmp". st dout and St dEr r may be used to specify afile name. If supplied, then standard out and
standard error of the process will be redirected to those files. If vai t istrue, then vRunPr ocess won't return
until the process has terminated. If mi ni ni ze istrue, then the process will be started in a minimized state.
vRunPr ocess return the exit code of the process.

Comments

See Also

vOS 102

vPane

The vPane class serves as a base class for various pane objects contained by the vCndW ndow class. There are

no methods or services provided by the vPane class that you need to use directly, but the classis used
extensively by V internally, and understanding its concepts are important to using V.

There are four types of panes used by V in avCndW ndow, including menu panes, canvas panes, command
panes and status panes. To add a pane to awindow, you will first define the contents of the pane (menu,

commands, statusinfo) using static arrays, then construct an instance of the pane with new vwhat ever Pane.

Then you add the instance to the window using AddPane.

Note that using the canvas panes is described in the Drawing page of the tutorial. The commands used with a
command pane are described in the commands page, while menus and status bars are covered in vienu and

vSt at us.

Canvas Pane

Header:

<v/vcanvas. h>
Class name:
vCanvasPane

Constructor:

user CanvasPane()

Command Pane

Header:

<v/vcndpane. h>
Class name:
vCommandPane

Constructor:

vComandPane(Conmandhj ect * cndbar)

vPane

103

vcmdwin.htm
drawing.htm
commands.htm
vmenu.htm
vstatus.htm

The V C++ GUI Reference Manual

Menu Pane

Header:

<v/vnenu. h>
Class name:
vMenuPane

Constructor:

vMenuPane(vMenu* nenubar)

Status Pane

Header:

<v/vstatusp. h>

Class name:
vStatusPane

Constructor:

vSt at usPane(vSt at us* sbar)

See Also

vPane 104

cmdobj.htm
vcanvas.htm
vcmdwin.htm
vcmdpane.htm
vmenu.htm
vstatus.htm

vPen

A classto specify the pen used to draw lines and shapes.

Synopsis

Header:
<v/vpen. h>
Class name:

vPen

Description

Pens are used to draw lines and the outlines of shapes. Pens have several attributes, including color, width,
and style.

Methods

vPen(unsigned int r =0, unsigned int g = 0, unsigned int b =0, int width = 1, int style =
vSolid)

The constructor for a pen allows you to specify the pen's color, width, and style. The default will construct a
solid black pen of width 1.
int operator ==, I=

Y ou can use the operators == and ! = for comparisons.

vColor GetColor()

This method returns the current color of the pen asavCol or object.

vPen 105

The V C++ GUI Reference Manual

int GetStyle()

This method returns the current style of the pen.

void GetWidth()

This gets the width of the line the pen will draw.

void SetColor(vColor& c)

Y ou can use this method to set the pen color by passing in avCol or object.

void SetStyle(int style)

This method is used to change the style of a pen. Stylesinclude:

vSolid
The pen draws a solid line.
vTransparent
The pen istransparent. A transparent pen can be used to avoid drawing borders around
shapes. When drawing text, atransparent pen draws the text over the existing background.
vDash
The pen draws a dashed line.
vDot
The pen draws a dotted line.
vDashDot

The pen draws an aternating dash and dotted line.

void SetWidth(int width)

This sets the width of the line the pen will draw.

vPen

106

VvPrintDC

A printer drawing canvas.

Synopsis

Header:

<v/vprintdc. h>
Class name:

vPrintDC

Description

This drawing canvas can be used to draw to a printer. Like all drawing canvases, the available methods are
described in vDC. A very effective technique for combining a printer DC and a screen DC is to pass a pointer
to either avCanvasPaneDC or avPri nt DCto the code that draws the screen. The same code can then be used
to draw or print.

To successfully use avPri nt DC, your code must obtain the physical size of the page in units using
Get PhysW dt h and Get PhysHei ght . On paper, these represent 1/72 inch points, and correspond very closely,
but not exactly, to a pixel on the screen.

Y ou must bracket the printing with callsto Begi nPri nti ng and EndPri nt i ng. Use Begi nPage and
EndPage to control paging. Note that the width of text will not necessarily be the sameon a
vCanvasPaneDC and avPri nt DC, even for the same fonts. Also, the size of the paper represents the entire
page. Most printers cannot actualy print all the way to the edges of the paper, so you will usually use
vDC: Set Tr ansl at e to leave some margins. (Don't forget to account for margins when you calculate what
can fit on apage.)

The implementation of vPri nt DCis somewhat platform dependent. For X, vPri nt DC represents a PostScript
printer, and is derived from the class vPSPr i nt DC. For Windows, vPr i nt DCis derived from the

vW nPri nt DCclass. To get platform independent operation for your application, use vPri nt DC. On Windows,
you can also use the PostScript version directly if you want by using the vPSPr i nt DC class, but the program
will not conform to standard Windows behavior.

Methods

vPrintDC 107

vdc.htm

The V C++ GUI Reference Manual

void SetPrinter(vPrinter& printer)

This method is used to associate avPri nt er withavPri nt DC. By default, avPri nt DC represents standard
8.5x11 inch Letter paper printed in black and white in portrait orientation. You can usevPri nter: : Set up to
allow the user to change the attributes of the printer, then use Set Pri nt er to associate those attributes with
thevPri nt DC. Note: If you change the default printer attributes, you must call Set Pri nt er before doing any
drawing to the DC.

Example

Thisis asimple example taken from the vbr aw demo program. Pri nt iscalled to print the current drawing.
Print calsvPrinter:: Setup to set the printer characteristics, and then calls Dr awshapes with a pointer to
thevPri nt DC. Dr awShapes isalso called to repaint the screen using the vCanvasPaneDC. By carefully
planning for both screen and printer drawing, your program can often share drawing code in this fashion.

/1 62; 62;62; nyCanvasPane::Print <<<
voi d nyCanvasPane: : Print()
{
/1 Print current picture
vPrint DC pdc; /'l create a vPrintDC object

vPrinter printer; /1

printer.Setup("test.ps"); 11

and a printer to set attributes

setup the printer

pdc. SetPrinter(printer); /1 change to the printer we setup
if (!pdc.BeginPrinting()) /1 call BeginPrinting first
return;
pdc. Set Tr ansl at e(36, 36) ; /1 Add 1/2" (36 * 1/72") margins
Dr awShapes(; /'l Now, call shared draw ng net hod
pdc. EndPrinting(); /1 Finish printing
}
/1 62; 62; 62; nyCanvasPane: : Dr awShapes <<<

voi d myCanvasPane: : Dr awShapes(vDC* cp)

/1 Common code for drawi ng both on Screen and Printer

..
See Also

vPrinter

vPrintDC

108

vprinter.htm

VvPrinter

A printer object, with adialog to interactively set printer attributes.

Synopsis

Header:

<v/vprinter. h>
Class name:

vPrinter

Description

ThevPri nt DCclass printsto a printer (or afile that will eventually be printed). Printers have such attributes
as size of paper, page orientation, color capability, etc. By callingthevPri nter: : Set up dialog before
printing, the user will be given the option of setting various printer attributes.

The exact functionality of the Set up dialog will be platform dependent. By using thevPri nt er class, you
will get the behavior appropriate for the platform. If you want to use the vPSPr i nt DC class for PostScript
support on Windows, you can use vPSPr i nt er directly.

Y ou can use the various methods associated with avPri nt er to get printer attributes as needed to during
drawing to the vPri nt DC.

Methods

int GetCopies()
void SetCopies(int s)

Many printers support printing multiple copies of the same document. This attributes controls the number of
copies printed. The Set up dialog will provide control of thisif it is supported.

vPrinter 109

The V C++ GUI Reference Manual

char* GetDocName()

Printer output may be directed to afile rather than the printer. If itis, thiswill return the name of thefile the
output will be sent to.

int GetPaper()

char* GetPaperName()

Printers can print avariety of papers. The user may be able to select which paper from the Set up dialog. The
printers supported are defined in the vpri nt er . h header file (or the base class used by vPri nt er).

int GetPortrait()

void SetPortrait(int p)

Many printers can print in either Portrait or Landscape orientation. This returns true if the printer will print in

portrait.

int GetToFile()

void SetToFile(int f)

Printer output may be directed to afile rather than the printer. This returnstrue if the user selected the option
to send output to afile.

int GetUseColors()

void SetUseColors(int ¢)

Printers can be either black and white, or color. Thisreturnstrue if the printer supports colors. Y ou can make
acolor printer print black and white by setting this to false.

int Setup(char* fn = 0)

This displays amodal dialog for the user to select desired printer characteristics. If afilenameis supplied,

that name will be used if the user selects print to file. If Set up returns false, you should abandon the print job.
After you call Set up, you can then call vPri nt DC: : Set Pri nt er to associate the printer with thevPri nt DC.

vPrinter 110

The V C++ GUI Reference Manual

Example

SeevPrint DCfor an example of using vPri nt er: : Set up.

vPrinter 111

vprintdc.htm

vReplyDialog

A utility classto get atext reply from the user.

Synopsis

Header:
<v/vreply. h>

Class name:
VReplyDialog
Hierarchy:

vModalDialog ->vReplyDialog

Description

Thissimple utility class can be used to obtain atext reply from the user. The utility displays a message, and
then waits for the user to enter areply into the reply field. The user completes the operation by pressing OK
or Cancel.

New Methods

vReplyDialog(vBaseWindow* win)
vReplyDialog(vApp* app)

ThevRepl yDi al og constructor requires a pointer to avBaseW ndow, which includes all V windows and
dialogs, or apointer to the vApp object. You will usualy passthet hi s to the constructor.

int Reply(const char* prompt, char* reply, const int maxLen, char* dflt ="")

vReplyDialog 112

The V C++ GUI Reference Manual

You provide apr onpt for the user. The text the user enterswill be returned to the buffer r epl y of maximum

length naxLen. Repl y will return the value M oK or M Cancel . Use dflt to provide a default reply.

Example

The following is a simple example of using vRepl yDi al og.

@ Please enter some text.

| Cancel | [[ox ||

#i nclude <v/vreply. h62

vRepl yDi al og rp(this); /'l instantiate
char r[100]; /1 a buffer for reply

(void)rp. Repl y("Pl ease enter sone text.",r,99);
vNot i ceDi al og note(this); /1 instantiate a notice
if (*r)

(voi d)note. Notice(r);

el se
(void)note. Notice("No text input.");

vReplyDialog

113

vSList

A classto manipulate listsfor C_Li st controls.

Synopsis

Header:

<v/vslist.h>

Class name:
vSList
Definition
cl ass vSLi st
{
publ i c: LR L LR LR public
vSLi st (i nt maxsize = 128);
~vSList();

voi d erase();

int size();

int insert(int insAt, char* strn);
int replace(int repAt, char* strn);
int deletelten(int del At);

i nt max;
char** list;

Description

This classis provided to make manipulation of listsused in C_Li st controls easier. Y ou can find some good
example code in the VIDE.

Methods

vSList 114

The V C++ GUI Reference Manual

vSList(int maxsize=128)

Y ou can specify in the constructor the maximum size of the list you will be working with. Someday | hope to

fix this class so that it will grow the list as needed.

void erase()

Erasesthe entire list. Deletes each item on the list, but leaves the space for 1 i st intact.

int size()

Returns the number of items on the list.

int insert(int insAt, char* strn)

Insertsthe string st r n into thelist at the pointi nsAt . If i nsAt islessthan zero, the item is appended to the
end of thelist.

int replace(int repAt, char* strn)

Replacestheitem at r epAt with the new st rn.

int deleteltem(int delAt)

Deletestheitem at del At .

int max

Thisisthe maximum size of thelist.

char** list

Thisisthe actual list of pointersto thelist strings. | suppose it really shouldn't be directly accessible, but it is.

vSList 115

The V C++ GUI Reference Manual

Comments

See Also

vDialog::SetValue, C_List

vSList 116

vStatus

Used to define label fields on a status bar.

Synopsis

Header:

<v/v_defs. h>
Type name:

vStatus
Used by:

vWindow

Description

Thevst at us structure is used to define the top level status bar included on avcndW ndow, and the labelsit
contains. Thevst at us array is usually passed to the vst at usPane constructor. See the section vPane for a
general description of panes.

Definition
typedef struct vStatus /1 for status bars
{
char* | abel ; /] text | abel
|tenval statld; /Il id
CndAttribute attrs; /] attributes - CA _NoBorder
unsi gned sensitive : 1; // if button is sensitive or not
int w dth; /1 to specify width (0 for default)
} vButton;

Structure Members

char* label Text of label field. See the description of the v ndow class for information on changing the text
of alabel.

vStatus 117

vwindow.htm

The V C++ GUI Reference Manual

ItemVal id Id for the label. Use this value when changing value with Set St ri ng or Set Val ue.

CmdAttribute attrs The current implementation only uses the CA_NoBor der attribute. If CA_NoBor der is
supplied, the label will be drawn on the command bar without a border or box around it. Not supplying
CA_NoBor der (e.g., CA_None) will result in alabel with a border or box around it. In general, unbordered
labels don't change, and bordered labels are used to show changing status.

int sensitive If label is sensitive or not. Use predefined symbolsi sSens and not Sens to specify the initial
state. On some implementations, the labdl will be grayed if it isinsensitive. The sensitivity can be changed
using vW ndow: : Set Val ue as described in the section v ndow.

int width This can be used to specify afixed width for alabel. Normally, the label will be sized to fit the
length of the text. If you provide a non-zero width, then the label field will remain constant size.

Example

This shows a sample status bar with two fields. It is added to avCndW ndow using AddPane. The value of the

file name would be changed by calling Set String(m curFile, filename) somewhereinyour program.

Cuzrent file: I sarple txt I

static vStatus sbar[] =

{
{"Current file:", mcurMg, CA NoBorder,isSens, 0},
{" ", mecurFile, CA None,isSens, 100},
{0,0,0,0,0}

1

vSt at usPane nySt at usPane = new vStatusPane(sbar); // construct
AddPane(ny St at usPane) ;

See Also

vWindow, vPane

vStatus

118

vwindow.htm
vpane.htm

vTextCanvasPane

A classfor drawing text on a canvas.

Synopsis

Header:

<v/vtextcnv. h>

Class name:
vTextCanvasPane
Hierarchy:

vPane ->vCanvasPane ->vTextCanvasPane

Description

This class provides a complete scrolling text window. Y ou can send text line by line to the window, and it
will scroll the text up the screen in response to linefeed characters. Y ou can a so position the cursor, and
selectively clear areas of the text screen or display text at specific locations. This class handles repainting the
screen on Redr aw events. In essence, the vText CanvasPane class provides the functionality of atypical
simple-minded text terminal.

New Methods

void ClearRow(const int row, const int col)

This clears to blanks row r ow of the screen from column col to the end of the line.

void ClearToEnd(const int row, const int col)

This clears to blanks from row r ow and column col to the end of the screen.

vTextCanvasPane 119

vpane.htm
vcanvas.htm

The V C++ GUI Reference Manual

int GetCols()

Returns number of columnsin current text canvas.

int GetRows|()

Returns number of rows in current text canvas.

void GetRC(int& row, int& col)

Returnsinrowand col the current row and column of the text cursor.

void GotoRC(const int row ,const int row)

Moves the text cursor tor ow, col .

void DrawAttrText(const char* text, const ChrAttr attr)

Drawst ext starting at the current cursor location using text attribute at t r . For more details, see

vDC: : DrawAt t r Text .

void DrawChar(const char chr, const ChrAttr attr)

Draws asingle character chr at the current cursor location using text attribute at t r . See Dr awaAt t r Text for
more details.

void DrawText(const char* text)

Drawst ext starting at the current cursor location. The newline character ' \ n* will cause the cursor to move
to the beginning of the next line, and the text to scrall if the cursor was on the last line.

void HideTextCursor(void)

This method will hide the text cursor.

void ShowTextCursor(void)

This method will redisplay the text cursor at the current row and column.

void ScrollText(const int count)
Thiswill scroll the text in the text canvas up or down by count lines. There will be count blank lines created

vTextCanvasPane 120

The V C++ GUI Reference Manual

at the bottom or top of the screen.

void ResizeText(const int rows, const int cols)

This method handles resize events. Y ou will want to override this to track the new number of rows and
columns.

void TextMouseDown(int row, int col, int button)

Thisis called when the user clicks the mouse button down. It is called with the text row and column, and the
button number.

void TextMouseUp(int row, int col, int button)

Thisis called when the user releases the mouse button. It is called with the text row and column, and the
button number.

void TextMouseMove(int row, int col, int button)

Thisis called when the mouse moves. It is called with the text row and column, and the button number.

Derived Methods

virtual void Clear()

This clears the text canvas and resets the row and column to 0,0.

void FontChanged(int)

Thisis called when the font of the canvas changes. Font Changed callsResi zeText , SO you probably won't
have to deal with this event.

void Redraw(int x, int y, int width, int height)

Called when the screen needs to be redrawn. Normally, you won't have to override this class since the
vText CanvasPane superclass will handle redrawing what is in the window. Instead, you will usually just

have to respond to the Font Changed and Resi zeText events when the contents of the canvas will actually
change.

vTextCanvasPane 121

The V C++ GUI Reference Manual

Inherited Methods

virtual void HPage(int Shown, int Top)

virtual void HScroll(int step)

virtual void SetFont(int vf)

virtual void SetHScroll(int Shown, int Top)

virtual void SetVScroll(int Shown, int Top)

virtual void VPage(int Shown, int Top)

virtual void VScroll(int step)

See Also

vCanvasPane, vCmdWindow

vTextCanvasPane

122

vcanvas.htm
vcmdpane.htm

vTextEditor

A complete text editing canvas pane.

Synopsis

Header:

<v/vtexted. h>
Class name:

vTextEditor
Hierarchy:

vCanvasPane ->vT extCanvasPane ->v TextEditor

Description

This classisacompletely functional line oriented text editor. It can edit any file with lines less than 300
characters wide that use a linefeed, carriage return, or combination of those to mark the end of each line.

While you need to create your own class derived from vText Edi t or , your class can be very minimal. You
will need to provide some service methods for the parent vemdW ndow, such as methods to open, read, save,
and close files. Other than actually working with the real text source and providing that source to

vText Edi t or , you can get a fully functional text editor with no additional work.

However, vText Edi t or has been designed to allow you to extend and add functionality to the editor if you
need to. The vText Edi t or also sends messages that will allow you to place various status messages on a
status bar if you wish. The hard stuff is done for you. Y ou don't need to worry about mouse movements,
scroll bars or scroll messages, updating the screen, handling keystrokes, or anything else associated with
actual editing. ThevText Edi t or classtakes care of al those details, and provides a standard editing
interface.

The following steps are required to use vText Edi t or . First, you create an instance of your derived class from
your vCmdW ndow class, something like this:

/1 The Text Editor Canvas
vedCanvas = new vedText Editor(this);
AddPane(vedCanvas) ;

vTextEditor 123

vcanvas.htm
vtextcnv.htm

The V C++ GUI Reference Manual

// Show W ndow

ShowW ndow() ;
vedCanvas- 62; ShowsScrol | (1); // Show Vert Scroll for vTextEditor

Your derived vText Edi t or class should provide the methods needed for opening and reading the text file
you want to edit. (Actualy, you can edit any text source you wish.) VText Edi t or doesn't actually read or
write any text itself. It maintains an internal line buffer. (The default version of the internal buffer is
essentially limited by the amount of memory your system can provide. The buffer methods can be overridden
to provide totally unlimited file size, if you wish.) Theideaisto have your application control where the text
comes from, and then add it aline at atimeto thevText Edi t or buffer. You retrieve thetext aline at atime
when you want to save the edited text. Thus, your if your code isworking with disk files, it can read the text a
lineat atime, and let vText Edi t or worry about the buffering.

The following code shows how to add the contents of atext file to the vText Edi t or buffer, and display it in
the canvas for the first time. Callsto vText Edi t or methods are marked with **.

/1 62; 62; 62; vedTextEditor::ReadFile <<<
int vedText Edi tor:: ReadFi | e(char* nane)
{
const int nmaxBuff = 300; /'l Line length
char buff[maxBuff];
if (!nane || !*nane)
return O;
i fstreaminFil e(nane); /1 Open the file
if ('inFile)
return O; /1 file not there
reset Buf f(); /1l ** Tell vTextEditor to init buffer

while (inFile.getline(buff,maxBuff)) // read file

i f (!addLine(buff)) /1 ** Add the line to the buffer
{
ERROR_MESSAGE("File too big -- only partially read.");
br eak;
}
}
inFile.close(); /1l Close the file
di spl ayBuff (); /1 ** Now, display the buffer
return 1;

}
To load text into the editor buffer, you first call r eset Buf f to initialize the buffer, then add aline at atime

with callsto addLi ne, and finally display the text by calling di spl ayBuf f.

When your are editing (e.g., the user enters a Close command), you retrieve the text from the
vText Edi t or buffer with callsto get Li ne.

Then, to use the editor, you pass keystrokes from the Keyl n method of your vCmdW ndow to the

Edi t Keyl n method of the vText Edi t or . Edi t Keyl n interprets the conventional meanings of the arrow keys,
etc., and lets you edit the text in the buffer. Y ou will also probably implement other commands, such as Find,
by using the Edi t Conmand method.

vTextEditor 124

The V C++ GUI Reference Manual

VText Edi t or also cals several methods to notify of text state changes, such as current line, insert or
overtype, etc. Y ou can receive these messages by overriding the default methods, and display appropriate
information on a status bar.

WhilevText Edi t or isvery complete, there are some things missing. The major holeis cut and paste support.

Thiswill be added when cut and paste support is added to V. There is also no real undo support. Maybe
someday.

Constructor

vTextEditor(vBaseWindow* parent)
ThevText Edi t or constructor requires that you specify the parent vCndW ndow. Since you usually create the

text editor object in your vCndW ndow object, thisis easy. You will probably need to cast thet hi s to a
vBaseW ndow*.

Utility Methods

resetBuff()

Before you load new text into the buffer, you must first call this method. It initializes the internal state of the
text buffer.

virtual int addLine(char* line)

Thismethod is called repeatedly to add linesto the text buffer. The default method is limited by the amount
of memory available on the system, and this method return O when it runs out of memory.

Note that the entire text buffer package can be overridden if you need to provide unlimited file size handling.
Y ou should examine the source code for vText Edi t or to determine the specifications of the methods you'd
need to override.

virtual void displayBuff()

After you have added the completefile, call di spl ayBuf f to display the text in the window.

virtual int getLine(char* line, int maxChars, long lineNum)

vTextEditor 125

The V C++ GUI Reference Manual

virtual int getFirstLine(char* line, int maxChars)

virtual int getNextLine(char* line, int maxChars)

These are used to retrieve the edited text from the buffer. You can use get Fi r st Li ne with get Next Li ne for
easy sequential retrieval, or get Li ne for specific lines. These methods return -1 when all lines have been
recovered.

virtual int EditCommand(int id, long val)

This method provides a complete interface to the functions provided by vText Edi t or . While the basic
editing functions are also handled by Edi t KeyI n, Edi t Conmand gives access to functions that typically are
either usually invoked from a menu command (such as Find), or don't have a standard mapping to afunctions
key (such as lineGoto). If you want the functionality of these commandsin your application, you will haveto
provide an appropriate menu or command pane item to support them.

Each function supported by vText Edi t or has an associated id (symbolically defined in v/ vt ext ed. h), each
beginning with ed. Many of the functions also take an associated value. Many editors allow arepetition count
to be specified with many commands. For example, it is sometimes useful to be able to specify a command to
move right some specific number of characters. Theval parameter can be used to specify avalue as desired.
The only function that really need avalue other than 1 (or -1 in the case of directional movement commands)
ISedLi neCGot 0.

Edi t Conmand returns 1 if the command was executed successfully, 0 if the command was recognized, but not
successful (the find fails, for example), and -1 if the command was not recognized as valid.

At the time this manual was written, the following commands are supported. Because vText Edi t or iS
evolving, itislikely more commands will be added. Check the v/ vt ext ed. h file for specification of new
editor commands. In the following descriptions, the note ““no val" meansthat theval parameter is not used.
A notation of “+/-" meansthe sign of val indicates direction.
edBalMatch
find matching paren (if val > 1, up to val lines away, otherwise within a reasonable range)
edBufferBottom
move to bottom of file (no val)
edCharDelete
delete +/- val chars
edCharFoldCase
swap case of +/- val letters
edCharlnsert

vTextEditor 126

The V C++ GUI Reference Manual

insert char val
edCharRight

move +/- val chars right
edFind

invoke TextEd's find dialog (no val)
edFindNext

find next occurrence of prev (no val)
edLineBeginning

move to line beginning (no val)
edLineDown

move down +/- val linesin column
edLineDownBeg

move down +/- val lines
edLineDelete

delete +/- val lines
edLineDeleteFront

delete to beginning of line (no val)
edLineDeleteToENd

delete to end of line (no val)
edLineEnd

move to end of line (no val)
edLineGoto

move cursor to line val
edLineOpen

open val new blank lines

edScrollDown

vTextEditor

127

The V C++ GUI Reference Manual

scroll +/- val lines without changing cursor
edVerify

force repaint of screen (no val)
edWordRight

move cursor +/- val words right

For a basic editor, the simplest way to use Edi t Cormand isto use the ed* id'sto define the associated menu
items and controls, and then call Edi t Command as the default case of the swi t ch in the
W ndowConmand method of your vonmdw ndow. Thus, you might have code that looks like this:

static vMenu EditMenu[] = {

{"Find", edFind, isSens, notChk, noKeyLbl, noKey, noSub},
{"Find Next", edFindNext, isSens, notChk, noKeyLbl , noKey, noSub},
{"Find Mat ching Paren", edBal Match, isSens, not Chk,

noKeyLbl , noKey, noSub},

/| ===========62; 62; 62; vedCnmdW ndow. : W ndowConmand <<<
voi d vedCndW ndow: : W ndowCommand(Itenval id, ItenVal val,
CmdType cType)

{
switch (id)
{
default: // route unhandl ed commands through editor
i f (vedCanvas-62; Edi t Command(id, 1) < 0)
vCmdW ndow. : W ndowCommrand(i d, val, cType);
br eak;
}
}
}
/1 62;62;62; vedCndW ndow: : Keyl n <<<

voi d vedCndW ndow: : Keyl n(vKey keysym unsigned int shift)

i f (vedCanvas-62; Edi t Keyl n(keysym shift) < 0)
vCmdW ndow: : Keyl n(keysym shift);
}

virtual int EditKeylIn(vKey key, unsigned int shift)

This method is usually called from the keyl n method of your derived vomdw ndow class. See the above code
example.

The default implementation of Edi t Keyl n handles most of the standard keys, such as the arrow keys, the

vTextEditor 128

The V C++ GUI Reference Manual

page keys, backspace, home, delete, insert, and end keys. It will also insert regular character keysinto the
text. It ignores function keys and non-printing control key values except tab and newline.

Y ou can override this method to provide your own look and feel to the editor.

edState GetEdState()

void SetEdState()

VText Edi t or maintains a state structure with relevant state information associated with various operating
options of vText Edi t or . It isdefined in v/ vt ext ed. h, and has the following fields:

typedef struct edState

{
| ong changes, /'l count of changes
crmdCount ; /1 how many tinmes to repeat conmand
i nt
fi ndAt Begi nni ng, /'l leave find at beginning of pattern
fixed_scroll, /1 flag if using fixed scrol
i ns_node, /1 true if insert node
counter, // counter for + insert
echof /1 whether or not to echo action
t abspc, /'l tab spacing
wrapl m /1 right limt
} edState

Y ou can query and set the state with Get EdSt at e and Set EdSt at e.

long GetLines()

Returns the number of linesin the current buffer.

Methods to Override

virtual void ChangeLoc(long line, int col)

This method is called by vText Edi t or whenever the current line or current column is changed. This
information could be displayed on a status bar, for example.

virtual void ChangelnsMode(int IsinsMode)

This method is called by vText Edi t or whenever the insert mode is changed. If 1 sI nsvode istrue, then the

editor isin insert mode. Otherwise, it isin overtype mode. The editor startsin insert mode. This information
could be displayed on a status bar, for example.

vTextEditor 129

The V C++ GUI Reference Manual

virtual void StatusMessage(char* Msg)

The editor will call this message with a non-critical message such as " Pattern Not Found" for certain
operations. This information could be displayed on a status bar, for example.

virtual void ErrorMessage(char* Msg)

The editor will call this message with acritical error message such as "Bad parameter value" for certain
operations. This information could be displayed in awarning dialog, for example.

See Also

vTextCanvasPane

vTextEditor 130

vtextcnv.htm

vTimer

A classfor getting timer events.

Synopsis

Header:

<v/vtiner.h>
Class name:

vTimer
Hierarchy:

vTimer

Description

Thisisautility classthat allows you to get events driven by the system timer. The accuracy and resolution of
timers on various systems varies, so this should be used only to get events on amore or less regular basis.
Usethe Clibrary t i me routines to get real clock time.

The V Appgen utility offers an option for adding atimer to the status bar. Looking at that generated codeis a
good way to understand vTi mer objects.

New Methods

vTimer

This constructs atimer object. The timer doesn't run until you start it with Ti ner Set . To make atimer useful,
you can override the constructor to add a pointer to awindow, and then use that pointer from within your
Ti mer Ti ck method to do something in that window: nyTi mer (vW ndow* useW ndow) .

int TimerSet(long interval)

vTimer 131

The V C++ GUI Reference Manual

This starts the timer going. The timer will call your overridden Ti mer Ti ck method approximately every
i nt erval milliseconds until you stop the timer. Most systems don't support an unlimited number of timers,
and Ti mer Set will return O if it couldn't get a system timer.

void TimerStop()

Calling this stops the timer, but does not destruct it.

void TimerTick()

This method is called by the system every interval milliseconds (more or less). The way to use thetimer isto
derive your own class, and override the Ti ner Ti ck method. Y our method will be called according to the
interval set for the timer. Note that you can't count on the accuracy of the timer interval.

vTimer 132

vWindow

A classto show awindow on the display.

Synopsis

Header:

<v/ vw ndow. h>
Class name:

vWindow
Hierarchy:

vBaseWindow ->vWindow
Contains:

vDiaog, vPane

Description

The vw ndow class is an aggregate class that usually has associated vPane objects - window panes, in other
words. There several kinds of panes, including menu panes, command bar panes, status panes, and drawing
canvas panes. As you would expect, classes derived from vwW ndow also include panes.

The vw ndow class will probably never be used by your application - it serves primarily as a superclass for the
vCmdW ndow class. This class may be more useful in future versions of V, but for now it is not really useful by
itself. You will typically derive your own class from vCndW ndow, and override several of the methods
defined by vW ndow and vCndW ndow.

Menus and commands in the panes send messages to the W ndowCommrand and MenuCormand methods when
the user clicks on a command or menu item contained in the window. The application program can also

change attributes of the various menu items and commands associated with a window. Canvas panes are
designed to handle their own interaction with the user (mouse events, etc.).

Constructor

vWindow 133

vdialog.htm
vpane.htm

The V C++ GUI Reference Manual

vWindow()

vWindow(char* title)

vWindow(char* title, int h, int w)

vWindow(char* title, int h, int, WindowType wintype)

title Titleto place in title bar. h,w The height and width of the window. wintype CMDWINDOW or
WINDOW type for window.

The constructor for vw ndow is normally called with a name, size, and possibly a window type. The name will
be displayed in the window's title bar by default. The sizeisthe initial size of the window's canvas work area
in pixels. The type may be cvDw NDoOwor W NDOW The constructor for vendw ndow invokes the proper
vW ndow constructor.

Methods to Override

virtual void Keyln(vKey key, unsigned int shift)

Keyl n isinvoked when akey is pressed while awindow has focus. The key valueisthe vkey value of the key
pressed, and shi f t indicates the shift state of the key.

Handling the keystroke is not necessarily trivial. Regular ASCII characters in the range from a Space (0x40)
up to atilde (~) are passed to Key!I n directly, and shift will be 0, even for upper case |etters. The current
version of V does not have explicit support for international characters, so values between 0x80 and OxFF are
undefined, and correspond to whatever might be the local convention for the character set. (Thiswill be one
thing for X and another for Windows - but you can count on the values for each platform. Thus, you can use
non-English characters on each platform, even though they won't be the same values on X and Windows. |
would like a portable solution for this. If any non-English users of V have any ideas about this problem, I'd
like to hear. The choice seems to be between the standard MS-DOS code page solution and the ANSI
character set used on X platforms. I'm not ready to support multibyte characters for some time yet.) Values
between 0xFF00 and OxFFFF correspond to the various function keys and keypad keys found on atypical
keyboard. The standard set by IBM PCs has determined what function keys are supported by V. Thefile

<v/ vkeys. h> hasthe definitions for the key codes supported. See the key code list.

Besides getting a keycode for the non-ASCI| keys, Keyl n also gives a shift code corresponding to the
Control, Shift, and Alt modifier keys. (These are defined asvKM Ct r I, VKM Shi ft, and VKM Al t .) Pressing
the F4 key would return the code for F4 (vk_F4), while the keystroke Alt-F4 will return the code for the F4
key, and the shift code set to VKM Al t . More than one bit of the shift code can be set - the shift values are
really bit values. Control keys from the normal character set (Ctrl-A, etc.) are passed as their true control
code, but not the VKM ¢t r | shift set.

In addition, you also need to check for the vkM Al t modifier applied to regular Ascii keys. The keystroke

vWindow 134

vkeys.htm
vkeys.htm

The V C++ GUI Reference Manual

Alt-K will be mapped to alower case Ascii 'k' with the VKM Al t bit setinshi ft. Thetop row keys (1,2,
etc.) can also be pressed with the vkM Ct r | bit set inshi ft, and your program will need to deal with these. It
will quite often be the case that your program simply ignores many of these values.

Keyl n will also return avalue when only a modifier key is pressed. For example, pressing the Alt key returns
akey value of vk_Al t . A macro defined in <v/ vkeys. h> called vk_I sModi f er (x) can be used to determine
if akey x isamodifier. Your program can usually ignore modifier keys.

If you have defined any keystroke combinations to be accel erators for menu commands, your program will
never see those keystrokes in Key| n. Instead, they are intercepted by the system and mapped to the
appropriate command to pass to the MenuConmmand method.

Note that the keystrokes are not displayed by the system. It is up to your program to handle keystrokes and to
do something useful with them.

Y ou should call vw ndow: : Keyl n from your derived method with any keystrokes you don't handle. The
vW ndow: : Keyl n method passes these unhandled keystrokes up to the vApp: : Keyl n method. Thus, you will
have the choice of either handling keystrokes in the window or in the app class.

virtual void MenuCommand(ltemVal itemld)

MenuConmand is called when a menu command is selected. This virtual function allows menu commands to
be distinguished from other commands in awindow, athough it is not usually necessary to do so. The default
method simply passes the menu command along to the W ndowCormand method, so you don't need to
override this method if you don't distinguish between menu and command events.

virtual void UpdateView(vWindow* sender, int hint, void* pHint)

Thisis used to implement MV C. Seethe discussion of MVC inthe vApp class. Updat eVi ewis called by the
derived vApp in response to the Updat eAl | Vi ews message from some other view of the model.

The hints are passed to Updat eVi ewto help define what action the view needs to take. The originator window
isidentified by sender . Generally, hi nt would have a value set to an enumdefined in your derived

vApp class. These values would hint about which kind of change is made so that only appropriate actionsis
taken by the appropriate views. The pHi nt istypically apointer to the object representing the model.

virtual void WindowCommand(ltemVal Id, IltemVal Val, CmdType Type)

This method is invoked when a user activates a command object in acommand pane. The | d of the command
object ispassed ininthel d field, and the value and type (e.g., C_Button or C_CheckBox) of the command
arepassed ininthe val and Type parameters. Note that command objects in a command pane are really no
different than the command objectsin adialog. Most of the discussion for handling these commandsis
covered in the sections on dialogs. See vConmandPane and vDi al og: : Di al ogConmand for more details about
the values passed to W ndowConmand.

W ndowConmand is also called by the default MenuConmand in response to menu picks. Thel d istheid of the
item that generated the call.

vWindow 135

The V C++ GUI Reference Manual

The default behavior of W ndowConmand isto call the AppConmmand method. However, you will almost always
override the default W ndowCommand method.

virtual void WorksSlice()

SeevApp: : Wr kSl i ce for adescription of this method.

Utility Methods

virtual void AddPane(vPane* pane)

This method is used to add the pane pane to awindow. Panes will be displayed in the order they are added.
Y ou can add exactly one menu pane, plus canvas, command, and status panes. Y ou typicaly first create a
given pane (e.g., nyPane = new XPane(PaneDef)), and then add the pane to the window with

AddPane(nyPane) .

void GetPosition(int& left, int& top, int& width, int& height)

Returns the position and size of t hi s window. These values reflect the actual position and size on the screen
of the window. On X, thisisthe whole vCommandwW ndow frame. On the Windows MDI version, it isthe size
and position of just the drawing canvas and its scroll bars. The intent of this method isto allow you to find
out where the active window is so you can move awindow, or position adialog so that it doesn't cover a
window. It is most useful when used in conjunction with Set Di al ogPosi ti on.

virtual int GetValue(ltemVal itemld)

This method is used to retrieve the value of a menu or command object in amenu or command pane. The

i tem d istheid of the item as defined in the menu or command bar definition. For menu items, this will
return the menu checked state. For other command objects, the value returned will be appropriate as
described in the Dialog Commands section.

virtual void RaiseWindow(void)

This method will raise the window to top of all windows on the display. Raising awindow is often aresult of
mouse actions of the user, but this method allows a buried window to be moved to the top under program
control. You will need to track which window instance you want raised, possibly through the

vAppW nl nf o object.

virtual void SetValue(ltemVal itemld, int Val, ltemSetType what)

This method is used to change the state of command window items. Theitem withit em d isset to Val using

vWindow 136

The V C++ GUI Reference Manual

the | t enBet Type parameter to control what is set. Not all command items can use all types of settings. See
vW ndow: : Get Val ue and vDi al og: : Set Val ue for amore complete description.

If amenu item and a command item in the same window share the same id, they will both be set to the same
value (this usually appliesto sensitivity). Only the controlsin the window that sent this message are changed.
virtual void SetValueAll(ltemVal itemld, int Val, ItemSetType what)

This method is similar to Set val ue, except that the control with the giveni t em d in ALL currently active
windows is set. Thisis useful to keep control valuesin different windowsin sync.

virtual void SetPosition(int left, int top)

Movest hi s window to thelocation | eft andt op. Thisfunction is of limited useful ness.

Set Di al ogPosi ti on ismore useful.

virtual void SetString(IltemVal itemld, char* title)

This can be used to change the label on acommand bar button, status bar label, or menu item. The item
identified by i t em d will haveitslabel changedtotitl e.

virtual void SetStringAll(ItemVal itemld, char* title)

This method is similar to Set St ri ng, except that the string with the giveni t emi d in ALL currently active
windows is set. Thisis useful to keep control strings in different windowsin sync.

virtual void SetTitle(char* title)

Set the name of the window shown onitstitlebar totitl e.

virtual void ShowPane(vPane* wpane, int OnOrOff)

Y ou can show or hide acommand, status, or canvas pane with this method. The pane must first be defined,
created, and added to the command window (which will show the pane). Y ou can then hide the pane later by
calling this method with the pointer to the pane and onor O f set to 0. A 1 will show the pane. Note that in
some environments (e.g., X), the window may show up again in a different position in the window. For
example, if you had acommand bar above a status bar, and then hide the command bar, it will be placed
under the status bar when you show it again. Thisisa feature" of X.

virtual void ShowWindow(void)

Y ou must call showw ndow() after you have added all the panes to the window. Y ou usually call
ShowwW ndow() in the constructor to your vCndW ndow class after you have created al the panes and have
used AddPane to add them to the window.

vWindow 137

The V C++ GUI Reference Manual

Other Methods

virtual void CloseWin()

This method is called by the vApp: : d oseAppW n method as part of closing down awindow. The default
vW ndow: : O oseW n() method's behavior is to take care of some critical housekeeping chores. Y ou will
normally never override this method. However, it is remotely conceivable that there will be an occasion you
need to do something really low level after awindow has been destroyed by the host GUI environment. In
that case, your method must call the immediate superclass vw ndow: : € oseW n() , and then do whatever it
hasto do. Normally, you handle such detailsin your classs c oseAppW n method.

See Also

vCmdWindow

vWindow 138

vcmdwin.htm

V Utility Methods

Several useful utility functions.

Synopsis

Header:

<v/vutil.h>

Description

V provides several utility functions that can often help with software portability (and can just be useful).
These are free subprograms - not amember of any specific class.

void ByteToStr(unsigned char b, char* str)

Thiswill convert the unsigned char in b to aHex character string inst r. Y ou need to make st r big enough to
hold the string.

void IntToStr(int intg, char* str)

Thiswill convert theinteger ini nt g to acharacter stringinst r. You need to make st r big enough to hold
the string.

void LongToStr(long intg, char* str)

Thiswill convert the long integer ini nt g to acharacter stringin st r. You need to make st r big enough to
hold the string.

long StrToLong(char* str)

Thiswill convert the character string in st r into along integer. Y ou can cast to get ints.

void vBeep()

This utility routine will sound an audible beep.

V Utility Methods 139

The V C++ GUI Reference Manual

void vGetcmdldIndex(ltemVal cmdld, CommandObject *cmdObj)

Sometimes when you work with a CommandObject array to define a dialog, you need to access the elements
of aparticular item in the array. Thisis especially true for manipulating lists. This routine will return the
index into a CommandObject array of an entry with the supplied I t enval cndl d.

void vGetLocalTime(char* tm)

Thiswill return a string representation of the current local time to the string t m The format will be
“HH:MM:SS AM". If you need a different format, you will need to use the C functionsti ne, | ocal ti ne,
andstrftine directly.

void vGetLocalDate(char* dt)

Thiswill return a string representation of the current local date to the string dt . The format will be

“MM/DD/YY". If you need a different format, you will need to use the C functionst i me, | ocal ti me, and
strftime directly.

V Utility Methods 140

VYNReplyDialog

A utility classto display a message, and get a Yes or No answer.

Synopsis

Header:

<v/vynreply. h>

Class name:
vYNReplyDiaog
Hierarchy:

vModalDialog ->vY NReplyDialog

Description

Thissimple utility class can be used to display a simple message to the user. The utility displays the message,
and then waits for the user to enter to press Yes, No, or Cancel.

New Methods

VYNReplyDialog(vBaseWindow* win)
VYNReplyDialog(VApp* app)

ThevYNRepl yDi al og constructor requires a pointer to avBaseW ndow, which includes al V windows and
dialogs, or apointer to the vApp object. You will usually passthet hi s to the constructor.

int AskYN(const char* prompt)

You provide apr onpt for the user. The user will then pressthe Yes, No, or Cancel buttons. AskYNreturnsa 1

VYNReplyDialog 141

vmodald.htm

The V C++ GUI Reference Manual

if the user selected Yes, a0 if they selected No, and a-1 if they selected Cancel.

Example

The following is a simple example of using vYNRepl yDi al og.

@ Ezt. Are you sure?

||Yes|| | No | | Cancel |

#i ncl ude <v/vynreply. h62;
vYNRepl yDi al og ynd(this); /1 instantiate a notice
int ans = ynd. AskYN("Exit. Are you sure?);

if (ans == 1)
exit(0);

VYNReplyDialog 142

CmdAttribute

A type describing attributes of various command objects.

Synopsis

Header:
<v/v_defs. h>
Type name:

CmdAttribute

Description

These attributes are used when defining command items. They are used to modify default behavior. These
attributes are bit values, and some can be combined with an OR operation. Note that not all attributes can be
used with all commands.

Attributes

CA Def aul t But t on Used with aC_But t on to indicate that this button will be the default button. The user can
activate the default button by pressing the Enter key as well as using the mouse. It will most often be
associated with the OK button.

CA_H dden Sometimes you may find it useful to have a command object that is not displayed at first. By
using the CA_H dden attribute, the command object will not be displayed. The space it will requirein the
dialog or dialog pane will still be allocated, but the command will not be displayed. Y ou can then unhide (or
hide) the command using the Set val ue method: Set Val ue(CmdI D, TrueOr Fal se, Hi dden).

CA_Hori zont al Command will have horizontal orientation. This attribute is used with Sliders and Progress
Bars.

CA_Lar ge The object should be larger than usual. It can be used with Lists, Progress Bars, Sliders, Text Ins,
and Vaue Boxes.

CA_Mai nMsg Used with aC_Label toindicate that its string will be replaced with the message supplied to the

CmdAttribute 143

The V C++ GUI Reference Manual

Showbi al og method.

CA_NoBor der CA_NoBor der specifies that the object isto be displayed with no border.

CA NolLabel Used for progress bars to suppress display of the value label.

CA_NoNot i fy Used for combo boxes and lists. When specified, the program will not be notified for each
selection of acombo box item or alist item. When specified, the program is notified only when the combo
box button is pressed, and must then use Get Val ue to retrieve the item selected in the combo box list. For
lists, you will need another command button in the dialog to indicate list selection is done.

CA_NoSpace Used for frames, this attribute causes the command objects within the frame to be spaced
together astightly as possible. Normally, command objects have a space of several pixels between them
when laid out in adialog. The CA_NoSpace attribute is especially useful for producing atightly spaced set of
command buttons.

CA_None No specia attributes. Used as a symboalic filler when defining items, and is redlly zero.

CA_Per cent Used with progress bars to add a % to the value label.

CA _Si ze Thesi ze element of the CommandQbj ect isbeing used to specify asize for the control. Thisis used
with buttons, spin controls, and lists.

CA_Smal I The object should be smaller than usual. It can be used with Progress Bars and Text Ins. On
Progress Bars, CA_Smal | meansthat the text value box will not be shown.

CA_Text Used for Spinners to specify that atext list of possible values has been supplied.

CA Vertical Command will have vertical orientation. This attribute is used with Sliders and Progress Bars.

CmdAttribute 144

CommandObject

Used to define commands to dialogs and command panes.

Synopsis

Header:

<v/v_defs. h>

Type name:

CommandObject

Part of:

vDialog, vCommandPane

Description

This structure is used to define command items in dialogs and command panes. Y ou will define a static array
of Commandbj ect items. Thisarray isthen passed to the AddDi al ogCmds method of adialog class such as
vDi al og Or vModal Di al og, or the constructor of avConmandPane object, or more typicaly, a class derived

from one of those.

Definition

typedef struct ComandObj ect

{
CmdType cndType;
| tenval cndl d;
Itenval retVal;
char* title;
voi d* itenlist;
CndAttribute attrs;
int Sensitive;
| tenival cFrane;
ItenVal cRi ght OF;
| tenval cBel ow;
int size;
char* tip;

} ComandObj ect ;

CommandObiject

11
11
/1
11
11
I
11
11
/1
11
11
I

what kind of itemis this
unique id for the item
initial value of object
string

used when cnd needs a li st
list of attributes

if itemis sensitive or not
Frane used for an item
Item placed left of this id
Item pl aced bel ow this one
Used for size information
Tool Tip string

145

vdialog.htm
vcmdpane.htm

The V C++ GUI Reference Manual

Structure Members

CmdType cndType
This value determines what kind of command item thisis. The types of commands are explained in the
section Commands.

Itemval cndld

This unique id for the command defined by the programmer. Each command item belonging to a dialog
should have aunique id, and it is advisable to use some scheme to be sure the ids are unique. The V system
does not do anything to check for duplicate ids, and the behavior is undefined for duplicate ids. Theid for a
command is passed to the Di al ogCormand method of the dialog, as well as being used for calls to the various
Set X and Get X methods. There are many predefined values that can be used for ids as described in the section
Standard V_Values.

The values you use for your id in menus and controls should be limited to being less than 30,000. The
predefined V values are all above 30,000, and are reserved. There is no enforcement of this policy. It isup to
you to pick reasonable values.

Thetypeltenmval existsfor historical reasons, and is equivalent to an int, and will remain so. Thus, the
easiest way to assign and maintain unique ids for your controlsisto use a C++ enum As many as possible
examplesin this manual will use enums, but examples using the old style const I t envval declarations may
continue to exist. Thereis more discussion of assigning idsin the following example.

int retVal

The use of this value depends on the type of command. For buttons, for example, this value will be passed
(along with the cndl d) to the Di al ogConmand method. Ther et Val isalso used for theinitial on/off state of
check boxes and radio buttons. For some commands, r et Val is unused. Note that the static storage provided
in the declaration is not used to hold the value internally. Y ou should use Get Val ue to retrieve the current
value of acommand object.

char* title
Thisis used for the label or text string used for command items.

voi d* itenli st
Thisis used to pass values to commands that need lists or strings. The ListCmd is an example. Note the voi d
* to alow arbitrary lists.

CndAttribute attrs
Some command items use attributes to describe their behavior. These attributes are summarized in the
CndAt t ri but e section.

int Sensitive

Thisis used to determineif an itemis sensitive or not. Note that the static storage provided in the declaration
isused by the V system to track the value, and should be changed by the Set val ue method rather than
directly. Thus dialogs sharing the same static declaration will all have the sasme value. Thisis usually desired
behavior.

I temval cFrane

Command items may be placed within aframe. If thisvalue is 0 (or better, the symbol NoFr ane), the
command will be placed in the main dialog area. If avalue is supplied, then the command will be placed
within the frame with the id cFr ane.

CommandObiject 146

commands.htm
stdvals.htm
stdvals.htm
stdvals.htm
cmdattr.htm

The V C++ GUI Reference Manual

Itemval cRightOf, ItenVval cBel ow

These are used to describe the placement of a command within adiaog. Ids of other commands in the same
dialog are used to determine placement. The current command will be placed to the right of the command
cRi ght O , and below the command cBel ow. The commands left and above don't necessarily have to be
adjacent. By careful use of these values, you can design very attractive dialogs. Y ou can control the width of
command objects by padding the label with blanks. Thus, for example, you can design a dialog with all
buttons the same size.

Y ou can also usethe CA_Hi dden attribute to selectively hide command objects that occupy the same location
in the dialog. Thus, you might have a button labeled Hi de right of and below the same command object as
another button labeled unHi de. By giving one of the two buttons the CA_Hi dden attribute, only one will be
displayed. Then you can use Set Val ue at runtime to switch which button is displayed in the same location.
The bigger of the two command objects will control the spacing.

int size

The size parameter can be used for some command objects to specify size. For example, for labeled Button
commands, the si ze specifies the minimum width in pixels of the button. It is also used in various other
command objects as needed. A value of zero for si ze always means use the default size. Thus, you can take
advantage of how C++ handles declarations and write Commandbj ect declarations that |leave off the

si ze values, which default to zero. Many of the examples in this reference do not specify these values.

char* tip

Thetip parameter is used to specify an optional Tool Tip string for use with a command object. If you provide
astring here, that string will be automatically displayed after the user holds the mouse over that control. The
exact delay before thetip is shown, and the format of the tip box is somewhat platform dependent, and all
platforms might not support tool tips. (Currently, only OS/2 does not support tips.) Note that if you use atip,
you must be sure to include a value (usually 0) for the size parameter!

Example

The following example defines a simple dialog with a message label on the top row, a check box on the
second row, two buttons in a horizontally organized frame on the third row, and an OK button on the bottom
row. Theidsin this example are defined using an enum Remember that your ids must be less than 30,000,
and using O is not agood idea. Thus, the enumin this example gives the ids values from 101 to 106. An
aternative used in V code prior to release 1.13 was to provide const declarations to define meaningful
symbolic values for the ids. Many examples of thistype of id declaration will likely persist.

It also helps to use a consistent naming convention for ids. The quick reference appendix lists suggested
prefixes for each control type under the CndType section. For example, use an id of the form bt nxxX for
buttons. Predefined ids follow the form M XxX.

Saraple

| Button 1 | | Button 2
[[ox]

enum {I bl1 = 101, frnil, btnl, btn2}
static CommandObj ect Sanple[] =
{

CommandObiject 147

The V C++ GUI Reference Manual

{C_Label, Ibl1, O,"Sanple", NoList, CA Mai nMsg, i sSens, NoFrane, 0, 0},

{C Frame, frni, 0, "", NoList, CA None,isSens, NoFrane, 0, | bl 1},

{C Button, btni, O, "Button 1", NoList, CA None, isSens,frmi,O,O0,O0,
"Tip for Button 1"},

{C Button, btn2, 0, "Button 2", NoList, CA None, isSens,frmi, btnl,O0,O0,
"Tip for Button 2"},

{C Button, MK, MCK " OK", NoList, CA DefaultButton,

i sSens, NoFraneg, 0, frml},
{C_EndOfLi st, 0, 0, 0, 0, CA_None, 0, 0, 0}
s

See Also

vCmdWindow, Standard Vaues, CmdAttribute, Commands

CommandObiject 148

vcmdwin.htm
stdvals.htm
stdvals.htm
cmdattr.htm
commands.htm

CommandObject Commands

This section describes how each of the command objects availablein V is used to build dialogs.

Synopsis

Header:
<v/v_defs. h>
Type name:

CmdType

Description

V provides several different kinds of command items that are used in dialogs. The kind of command is
specified in the cndType field of the Commandj ect structure when defining adialog. This section describes
current dialog commands available with V. They will be constructed by V to conform to the conventions of
the host windowing system. Each command is named by the value used to defineit in the

Conmmandhj ect structure.

List of commands

C_Spinner, C_Text, C_Textln, C_TogaleButton, C_TogaleFrame, C_Togalel conButton

Commands

C_Blank

A Blank can help you control the layout of your dialogs. The Blank object will occupy the space it would
takeif it wereaC_Label , but nothing will be displayed. Thisis especially useful for leaving space between
other command objects, and getting nice layouts with RightOfs and Belows. Y ou control the size of the
Blank by providing a string with an appropriate number of blanksfor theti t1 e field.

CommandObject Commands 149

cmdobj.htm

The V C++ GUI Reference Manual

C_BoxedLabel

| Special Label Inforrnation |

This command object is just |like a C Label, but drawn with a surroundi ng box. See
C_Label .

C_Button

A Button is one of the primary command input itens used in dialog boxes. Wen the user
clicks on a Button, the values set in the cndld and retval fields are passed to the

Di al ogCommand et hod. In practice, the retval field is not really used for buttons - the
cndld field is used in the switch statenment of the Dial ogCormand mnet hod.

A button is defined in a CommandQbj ect array. Thisisatypical definition:

{C Button, btnld, O,"Save", NoList, CA None, i sSens, NoFrane, 0, 0}
Ther et val field can be used to hold any value you wish. For example, the predefined color button frame
(seevCol or) usesthecndl d field to identify each color button, and usesther et val field to hold the index
into the standard V color array. If you don't need to use ther et Vval , asafe convention isto a0 for the
ret Val . You can put any label youwishinthetitl e field.

If you provide the attribute CA_Def aul t But t on to the CndAt t ri but e field, then this button will be
considered the default button for the dialog. The default button will be visually different than other buttons
(usually adifferent border), and pressing the Return key is the same as clicking on the button.

The size of the button in pixels can be controlled by using the ConmandObj ect element si ze. By specifying
the attribute cA_Si ze and providing avaue for the si ze element, you can control the size of the button. Note
the that the si ze element isthe last one of a Commandbj ect , and can left out of a declaration, which results
in the compiler generating a zero value.

Y ou can change the label of abutton with: Set Stri ng(bt nl d, "New Label ") . You can change the
sensitivity of a button with Set Val ue(btnl D, OnOr OFf, Sensitive).

C_CheckBox

B show Details

A CheckBox is usually used to set sonme option on or off. A CheckBox conmand item
consists of a check box and an associ ated | abel. Wien the user clicks on the check box,
t he Dial ogCommand nmethod is invoked with the I1d set to the cmdid and the val set to the
current state of the CheckBox. The systemtakes care of checking and unchecking the

di spl ayed check box - the user code tracks the |ogical state of the check box.

A CheckBox is defined in a CommandObj ect array. Thisisatypical definition:

CommandObject Commands 150

The V C++ GUI Reference Manual

{C _CheckBox, chkld, 1,"Show Details", NoLi st, CA None, i sSens, NoFr ane, 0, 0}
Theret val isused toindicate theinitial state of the check box. Y ou should use the Get Val ue method to get
the current state of acheck box. Y ou can also track the state dynamically in the Di al ogConmand method. Y ou
can put any label youwishinthetitl e field.

Y ou can change the label of acheck box with: Set St ri ng(chkl d, " New Label ") . You can change the
sensitivity of a check box with Set val ue(chkl D, OnOr O f, Sensi ti ve) . You can change the checked state
with Set Val ue(chkl D, OnOr O f, Checked).

If the user clicks the Cancel button and your code calls the default Di al ogConmand method, V will
automatically reset any check boxes back to their original state, and call the Di al ogConmand method an
additional time with the original value if the state has changed. Thus, your code can track the state of check
boxes as the user checks them, yet rely on the behavior of the Cancel button to reset changed check boxes to
the original state.

The source code for the V vDebugDi al og class provides a good example of using check boxes (at least for the
X version). Itisfound inv/ src/ vdebug. cxx.

C_ColorButton

Z

A col or command button. This works exactly the same as a CButton except that the button
may be col ored. You use C ColorButton for the cndType field, and provide a pointer to a
vColor structure in the itenList field using a (void*) cast. The |abel is optional.

Theret val field of acolor button is not used. Y ou can generate a square color button of a specified size by
specifying an empty label (") and asi ze value greater than 0. When you specify the si ze field, the color
button will be a colored square si ze pixels per side. When used within a CA_NoSpace frame, this feature
would allow you to build a palette of small, tightly spaced color buttons. In fact, V provides a couple of such
paettesinv/ vcb2x4. h and v/ veb2x8. h. Theseinclude files, aswell as the other details of the vCol or class
are described in the section vCol or in the Drawing chapter.

There are two ways to change to color of a button. The most direct way is to change each of the RGB values
in three successive callsto Set Val ue using Red, Gr een, and finally Bl ue asthel t enet Type to change the
RGB values. The call with Bl ue causes the color to be updated. | know thisisn't the most elegant way to do
this, but it fits with the Set Val ue model.

An alternate way isto change the value of the original vCol or used to define the initia color of the control,
and then call set val ue with the ChangeCol or set type.

Thisis ashort example of defining ared button, and then changing it.

static vCol or btncol or(255,0,0}; // define red

/'l part of a ConmandQhject definition
{C ColorButton, chtl, 0, "", (void*)
CA_None, isSens, NoFrame, 0, btnXXX},

CommandObject Commands 151

The V C++ GUI Reference Manual

/1 Code to change the color by sone arbitrary val ues

bt ncol or. Set (bt ncol or.r () +127, btncol or. g()+63, btncol or.b()+31);
#i f def ByCol or /'l by vCol or after changi ng btncol or

Set Val ue(cbt 1, 0, bt ncol or);
#el se /1 by individual colors

Set Val ue(cbt 1, (ItenVal)btncolor.r(), Red);

Set Val ue(cbt 1, (Itenval) bt ncol or. g(), G een);

/1 This final call with Blue causes color to update in dial og

Set Val ue(cbt 1, (I1tenVal) bt ncol or. b(), Bl ue);
#endi f

C_ComboBox

[F=_1H

Bruce
Katrina
Risa
Van

A conbo box is a drop-down list. It normally appears as box with text acconpani ed by
sonme kind of down arrow button. You pass a list of alternative text values in the
itenList field of the Commandbject structure. You al so nust set the retval field to the
index (starting at 0) of the itemin the list that is the default value for the conbo
box text title.

If the user clicksthe arrow, alist pops up with a set of alternative text values for the combo box label. If the
user picks one of the aternatives, the popup closes and the new value fills the text part of the combo box.
V supports up to 32 itemsin the combo box list. You need to useac Li st if you need more than 32 items.

With default attributes, a combo box will send a message to Di al ogConmand whenever a user picks a
selection from the combo box dialog. This can be useful for monitoring the item selected. If you define the
combo box with the attribute CA_NoNot i f y, the dialog in not notified on each pick. Y ou can use Get Val ue to
retrieve the index of the item shown in the combo box text field.

Y ou can preselect the value by using Set Val ue. Y ou can change the contents of the combo list by using
vDi al og: : Set Val ue with either ChangelLi st Or ChangelLi st Pt r. SeevDi al og: : Set Val ue for more details.

Example

The following is a ssmple example of using a combo box in amodal dialog. This example does not process
items as they are clicked, and does not show code that would likely be in an overridden

Di al ogCormand method. The code interface to alist and a combo box is very similar - the interaction with
the user is different. This example will initialy fill the combo box label with the text of conmbolLi st[2] .

enum { cbxld = 300 };
char* conbolist[] =

{
"First 0", /] The first itemin the |ist

CommandObject Commands 152

The V C++ GUI Reference Manual

"Item N', /] The last itemin the |ist
0 /!l O terminates the list

};
CommandCbj ect Conbolist[] =

{C_ConboBox, chbxld, 2, "A Conmbo Box", (void*)conbolist,
CA NoNoti fy, isSens, NoFrane, 0, 0},
{C Button, MOK, MK, " OK", NolList,
CA Defaul tButton, isSens, NoFrame, 0, Listld},
{C_EndO Li st, 0, 0,0, 0, CA_None, 0, 0, 0}
1

vModal Di al og cd(this); /'l create list dialog
int cid, cval;

cd. AddDi al ogCnds(conboli st); /1 Add commands to dial og

cid = | d. Showwbdal Di al og("",cval); [// Wait for OK
cval = 1d. CGetValue(cbxld); // Retrieve the item selected

C_EndOfList

Thisis not really acommand, but is used to denote end of the command list when defining a
CommandObj ect structure.

C_Frame

Set. Options
O Option 1 O Option 2

O Option 3

The frame is a line around a related group of dialog cormmand itens. The dial og wi ndow
itself can be considered to be the outernpst frame. Just as the placenent of commuands
within the dialog can be controlled with the cRightca and cBelow fields, the placenent of
controls within the frame use the sane fields. You then specify the id of the frame
with the cFrane field, and then relative position within that frane.

Thetitl e field of aframeis not used.
Y ou may supply the CA_NoBor der attribute to any frame, which will cause the frame to be drawn without a
border. This can be used as alayout tool, and is especially useful to force buttonsto line up in vertical

columns.

See the section CommandObject for an example of defining aframe.

C_lcon

(T}

A display only icon. This works exactly the same as a C Label except that an icon is
di spl ayed instead of text. You use C.lcon for the cndType field, and provide a pointer to

CommandObject Commands 153

The V C++ GUI Reference Manual

the vicon object in the itenList field using a (void*) cast. You should al so provide a
nmeani ngful | abel for the title field since sone versions of V nay not support icons.

Y ou can't dynamically change the icon.

C_lconButton

®

A command button lcon. This works exactly the same as a CButton except that an icon is
di spl ayed for the button instead of text. You use C.lconButton for the cndType field, and
provide a pointer to the vicon object in the itenList field using a (void*) cast. You
shoul d al so provide a nmeani ngful |abel for the title field since some versions of V may
not support icons.

Y ou can't dynamically change the icon. The button will be sized to fit the icon. Note that the
v/ i cons directory contains quite afew icons suitable for using on command bars.

C_Label

C_ColorLabel

This placesalabel in adialog. A label isdefined in a Conmandbj ect array. Thisisatypical definition:

{C _Label, Iblld,O0,"Select Options", NoLi st, CA None, i sSens, NoFrane, 0,0, 0, 0}
While the value of alabel can be changed with Set St ri ng(1 bl I d, "New Label "), they are usualy static
items. If the label is defined with the cA_Mai nMsg attribute, then that label position will be used to fill the the
message provided to the Showbi al og method.

A C Col or Label isalabdl that usesthe List parameter of the Conmandbj ect array to specify avCol or. You
can specify the color and change the color in the same fashion as described in the C_Col or But t on command.

C_List

Itecnd
Itea 5 %
Itera 6

Itera 7
Itern 8
Itern ®

Itera 10
Itera 11

Alist is a scrollable window of text itens. The |ist can be made up of any nunber of
itens, but only a linited nunmber are displayed in the list scroll box. The default wll
show eight itenms at a tinme. The nunber of rows can be controlled as explained | ater.

CommandObject Commands 154

The V C++ GUI Reference Manual

The user uses the scroll bar to show various parts of the list. Normally, when the user clickson alist item, the
Di al ogCommand isinvoked with theid of the List command in the | d parameter, and the index into the list of
the item selected in the val parameter. This value may be less than zero, which means the user has unselected
an item, and your code should properly handle this situation. This only means the user has selected the given
item, but not that the selection isfinal. There usually must be a command Button such as OK to indicate final
selection of the list item.

If the List is defined with the attribute CA_NoNot i fy, Di al ogConmand is not called with each pick. Y ou must
then use Get Val ue to get which item in the list was selected.

It is possible to preselect a given list item with the Set Val ue method. Use the Get Val ue to retrieve the
selected item'sindex after the OK button is selected. A value less than zero means no item was selected.

The number of rows displayed can be controlled by using the Commandbj ect element si ze. By specifying
the attribute CA_si ze and providing avalue for the si ze element, you can specify how many rowsto show. If
you don't specify asize, 8 rowswill be displayed. Vwill support between 1 and 32 rows. Note the that the

si ze element isthe last one of a Commandbj ect , and can left out of adeclaration, which resultsin the
compiler generating a zero value, giving the default 8 rows.

The width in pixels (approximately) of the list can be controlled by specifying the CA_Li st W dt h attribute
and providing avalueto ther et Val parameter, which is otherwise unused for alist object. This
implementation isn't perfect - you may have to play with the interaction between the width you specify, and
the font used in alist control.

Change the contents of the list with vDi al og: : Set Val ue using either ChangeLi st Or ChangelLi st Ptr. See
vDi al og: : Set Val ue for more details.

TheyvsLi st class provides avery useful set of utilities for working with C_Li st lists.

Example

The following is a simple example of using alist box in amodal dialog. This example does not process items
asthey areclicked. Thislist will be displayed in 12 rows.

enum {lstld = 200 };
char* testList[] =

{
"First 0", /] The first itemin the |ist
"ltem N', // The last itemin the |ist
0 // O termnates the |ist

b

CommandQbj ect ListList[] =
{
{C_List, Istld, 0, "A List", (void*)testlList,
CA NoNotify | CA_Size,isSens, NoFrane, 0, 0, 12},
{C Button, MK, MK " K", NoList,
CA Defaul tButton, isSens, NoFrane, 0, |stld},
{C_EndO Li st, 0, 0, 0, 0, CA_None, 0, 0, 0}
}s

CommandObject Commands 155

vslist.htm

The V C++ GUI Reference Manual

vibdal Di al og | d(this); /'l create list dialog
int lid, lval;

| d. AddDi al ogCrrds(Li st Li st); /1 Add commands to dial og

I d. Set Val ue(lstld,8, Value); // pre-select 8th item

lid = 1d. Showmvbdal Di al og("",lval); [/ Wait for OK

Ival = 1d.GetValue(lstld); // Retrieve the item selected

C_ProgressBar

B77%)

Bar to show progress. Used with CA Vertical or CA Horizontal attributes to control
orientation. You change the value of the progress bar wi th SetVvalue(ProglD val, Value),
where val is a value between 0 and 100, inclusive. Nornally, the progress bar will show
both a graphical indication of the value, and a text indication of the value between 0
and 100.

If you don't want the text value (for example, your value represents something other than 0 to 100), then
define the progress bar with the CA_NoLabel attribute. Usethe CA_Per cent attribute to have a % added to the
displayed value. You can also use CA_Smal | or CA_Lar ge to make the progress bar smaller or larger than
normal. If you need atext value display for ranges other than O to 100, you can build a CA_NoSpace frame
with aprogress bar and atext label that you modify yourself.

Example

The following shows how to define a progress bar, and how to set its value.

enun{frml = 200, |bl1, pbrH pbrv, ... };
stati c ConmandChj ect Cmds[] =
{
/'l Progress Bar in a frame
{C Frame, frni, 0, "", NoList, CA None,isSens, NoFrane, O, 0},
{C_Label, Ibl1l, 0, "Progress", NoList, CA None,isSens, frmnt, 0, 0},
{C _ProgressBar, pbrH, 50, "", Nolist,
CA Horizontal ,isSens,frml, O, Ibl1}, // Horiz, with |abel
{C_ProgressBar, pbrVv, 50, "", NoList, // Vertical, no value
CA Vertical | CA Small, isSens, NoFrame, 0, frml},
}s
// Set the values of both bars to same
Set Val ue(pbrH, retval, Val ue) ; /1 The horizontal bar
Set Val ue(pbrV, retval, Val ue) ; /1 The vertical bar

C_RadioButton

CommandObject Commands 156

The V C++ GUI Reference Manual

|Oxor @xoar OkrQE Oxasa |

Radi o buttons are used to select one and only one itemfroma group. Wen the user
clicks on one button of the group, the currently set button is turned off, and the new
button is turned on. Note that for each radio button press, two events are generated.
One a call to DialogCommand With the id of the button being turned off, and the other a
call with the id of the button being turned on. The order of these two events is not
guaranteed. The retval field indicates the initial on or off state, and only one radio
button in a group should be on.

Radio buttons are grouped by frame. Y ou will typically put agroup of radio buttons together in aframe. Any
buttons not in aframe (in other words, those just in the dialog window) are grouped together.

Radio buttons are handled very much like check boxes. Y our code should dynamically monitor the state of
each radio button with the Di al ogCommand method. Selecting Cancel will automatically generate callsto
Di al ogCommand to restore the each of the buttons to the original state.

Y ou can use Set Val ue with aVval ue parameter to change the settings of the buttons at runtime.
Set Val ue will enforce asingle button on at atime.

Example

The following example of defining and using radio buttons was extracted from the sasmple file
v/ exanp/ nydi al og. cpp. It starts with the button RB1 pushed.

enum {
frmvl = 200, rdbl, rdb2, rdb3,

1
static ConmandChj ect Defaul t Crds[] =
{
{C Frame, frnVl, 0, "Radios", NoList, CA Vertical,isSens, NoFrane, 0, 0},
{C_Radi oButton, rdbl, 1, "KOB", NoList,CA None,isSens, fnVi, 0, 0},
{C_Radi oButton, rdb2, 0, "KOAT", NoList, CA None, isSens,frnvi, 0O, 0},
{C_Radi oButton, rdb3, 0, "KRQE", NoList,CA None, isSens,frnvi, 0, 0},
{C_Button, M Cancel,M Cancel,"Cancel", NoLi st, CA _None,
i sSens, NoFrame, 0, frnVi},
{C Button, MK, MCK " OK", NoList, CA DefaultButton,
i sSens, NoFrane, M Cancel, frnvi},
{C_EndO Li st, 0, 0, 0, 0, CA_None, 0, 0, 0}

}s
voi d nyDi al og: : Di al ogCommand(Itemval 1d, ItenVal Val, CndType Ctype)
{
switch (1d) /!l switch on command id
{
case rdbl: // Radi o Button KOB

/1 do sonething useful - current state is in retval
br eak;

/1 cases for other radio buttons

}
/'l let the super class handle M Cancel and M OK

CommandObject Commands 157

The V C++ GUI Reference Manual

vDi al og: : Di al ogCommand(i d, retval , ctype);
}

C_sSlider

:D:

Used to enter a value with a slider handle. The slider will provide your programw th a
val ue between 0 and 100, inclusive. Your programcan then scale that value to whatever
it needs.

V will draw dlidersin one of three sizes. Use cA_sSmal | for asmall slider (which may not be big enough to
return al values between 0 and 100 on all platforms), CA_Lar ge to get alarger than normal slider, and no
attribute to get a standard size slider that will return all values between 0 and 100. Usethe CA_Verti cal and
CA Hori zont al attributes to specify orientation of the slider.

When the user changes the value of the slider, the Di al ogCommand method is called with the id of the slider
for the | d value, and the current value of the dider for the Ret val value. You can use Set Val to set avaue
for the dider.

Example

The following example shows the definition line of a slider, and a code fragment from an overridden
Di al ogConmand method to get the value of the dialog and update aC_Text item with the current value of the
dlider. The dlider starts with avalue of 50.

enum{ frnl = 80, sldl, txtl };
ComrandObj ect Commands[] =

{
{C Frame, frni, 0, "", NoList, CA None,isSens, NoFrane, 0, 0},
{C_Slider, sldil, 50, "", NoList,CA Horizontal,isSens,frmt, 0, 0},
{C Text, txtl, 0, "", "50",CA None,isSens, frnil, sldl, 0},

}s

voi d testDi al og:: Di al ogCommand(|tenVal id,
ItenVal retval, CndType ctype)

{
switch (id) /1 \Which dialog conmand itenf
{
case sl di: /1 The slider
{
char buff[20];
sprintf(buff,"%l", retval); // To string
Set String(txtl, buff); /'l Show val ue
}
}

CommandObject Commands 158

The V C++ GUI Reference Manual

C_Spinner

¥Walue List %

This command itemis used to provide an easy way for the user to enter a value froma
list of possible values, or in a range of values. Depending on the attributes supplied
to the Commandbject definition, the user will be able to select froma short |ist of
text values, froma range of integers, or starting with some initial integer value. As
t he user presses either the up or down arrow, the value changes to the next perm ssible
value. The retval field specifies the initial value of the integer, or the index of the
initial itemof the text list. You use the Getvalue method to retrieve the final value
fromthe C Spinner.

Y ou can change the contents of the spinner list by using vDi al og: : Set Val ue with either ChangelLi st or
ChangelLi st Pt r. SeevDi al og: : Set Val ue for more details.

The size of the spin value field in pixels can be controlled by using the ConmandCbj ect element si ze. By
specifying the attribute CA_Si ze and providing avalue for the si ze element, you can control the size of the
valuefield . Note the that the si ze element isthe last one of a Commandbj ect , and can left out of a
declaration, which results in the compiler generating a zero value.

Example

This example shows how to setup the C_spi nner to select avalue from atext list (when supplied with alist
and the CA_Text attribute), from arange of integers (when supplied arange list), or from a starting value
(when no list is provided). The definitions of the rest of the dialog are not included.

static char* spinList[] = /1 alist of colors
{
n Redu , n G. eenu , n Bl ueu’ 0
b
static int m nMaxStep[3] = // specify range of
{ /1 -10 to 10
-10, 10, 2 /'l in steps of 2
1
enum { spnCol or = 300, spnM nMax, spnint, ... };
ConmmandObj ect SpinDialog[] =
{
{C_Spi nner, spnCol or, 0, "Vbox", // A text list.
(voi d*) spi nLi st, CA_Text, /'l the list is CA Text

i sSens, NoFrame, 0, 0},

{ C_Spi nner, spnM nMax, 0, "Vbox", // a range -10 to 10
(voi d*) m nMaxSt ep, CA_ None, [// by 2's starting at O
i sSens, NoFrane, 0, 0},

{C_Spi nner, spnl nt, 32, "Vbox", [/ int values step by 1
NoLi st, CA_None, /] starting at 32
i sSens, NoFrame, 0, 0},

CommandObject Commands 159

The V C++ GUI Reference Manual

C_Text

This is an exaraple
of a tavo line text.

This draws boxed text. It is intended for displaying information that m ght be changed,
unlike a |label, which is usually constant. The text may be multi-line by using a '\n.
The retval and title fields are not used. The text to display is passed in the

itentist field.

Y ou can use the CA_NoBor der attribute to suppress the border.

A definition of aC _Text item inaCommandj ect definition would look like:

{C Text, txtld, 0, "", "This is an exanple\nof a two line text.",
CA_None, i sSens, NoFranme, 0, 0, 0,0},

Y ou can change the label of text box with: Set String(txtld,"New textto show ").

C_TextIn

| Editable input text _

This command is used for text entry fromthe user. The text input command itemw ||
typically be boxed field that the user can use to enter text.

The strategy for using a Textln command item is similar to the List command item. Y ou need an OK button,
and then retrieve the text after the dialog has been closed.

You can provide adefault string intheti t 1 e field which will be displayed in the TextIn field. The user will
be able to edit the default string. Use an empty string to get a blank text entry field. Ther et val field isnot
used.

There are two ways to control the size of the Textln control. If you specify CA_None, you will get a Textln
useful form most simple input commands. Using CA_Lar ge gets awider Textln, whileCA_Snal | getsa
smaller TextIn. You can also use thesi ze field of the Commandj ect to explicitly specify awidth in
characters. When you specify a size, that number of characterswill fit in the TextIn, but the control does
not enforce that size as alimit.

If you specify the attribute CA_Passwor d, then the user'sinput will either be echoed as asterisks
(MS-Windows), or not echoed (X).

Example

CommandObject Commands 160

The V C++ GUI Reference Manual

The following example demonstrates how to use a Textln.

ConmmandObj ect textlnList[] =
{

{C Textln, txild,0,"", NoLi st, CA_None, i sSens, NoFr an®, 0, 0},

{C EndCf Li st, 0, 0, 0, 0, CA_None, 0, 0, 0}

b
vibdal Di al og nd(t his); /11 make a dial og
int ans, val;
char text_buff[255]; /1 get text back to this buffer

nd. AddDi al ogCmds(textInList); // add conmands

ans = nd. ShowMvbdal Di al og("Enter text.", val); [/ Showit
text_buff[0] = O; /1 make an enpty string

(void) md. GetTextIn(txild, text_buff, 254); // get the string

C _ToggleButton

A C Toggl eButton i s a conbination of a button and a checkbox. Wen the toggle button is
pressed, the vomWw ndow : WndowCormand nmethod is called, just as with a regul ar command
button. However, the systemwi ||l change the | ook of the toggle button to indicate it
has been pressed. Each click on a C ToggleButton Will cause the button to appear pressed
in or pressed out.

Theret val field of the CormandQbj ect definition is used to indicate the initial state of the toggle.

The behavior of atoggle button is like a check box, and not aradio button. Thisis more flexible, but if you
need exclusive radio button like selection, you will have to enforce it yourself using
Set Val ue(toggl el d, val , Val ue) .

/1 Define a toggle button with id tbtToggle and

/1 an initial state of 1, which neans pressed in

{C_Toggl eButton, tbt Toggle, 1,"", NoList, CA None,
i sSens, NoFranme, 0, 0},

/!l The case in WndowConmmand shoul d be like this:

case tbt Toggl e:
{
/'l Always safest to retrieve current val ue
ItenVal curval = CetVal ue(tbt Toggle);
/1 Now, do whatever you need to
if (curval)
it is pressed

el se

. it is not pressed

br eak;

CommandObject Commands 161

The V C++ GUI Reference Manual

C_ToggleFrame

Set Options
O Option 1 O Option 2

O Option 3

A C ToggleFrame is V's answer to the Wndows Tab control. Wiile Vdoesn't have real Tab
controls, using a conbination of C Toggl eFrames and either radio buttons or toggle
buttons, you can design very nice multi-frane dial ogs.

A Toggle Frame works just like aregular C_Fr ame except that you can use Set Val ue with atype val ue to
hide or make visible al controls contained or nested in the toggle frame. (Note: setting the val ue of atoggle
frame is not the same as setting its Hi dden attribute.)

The strategy for using toggle frames follows. First, you will usually use two or more toggle frames together.
In the dialog CommandQbj ect definition, you first define one radio button or one toggle button for each toggle
frame used in the dialog. Y ou then define aregular bordered C_Fr ane positioned below the radio/toggle
buttons. Then place CA_NoBor der toggle framesinside that outer frame. The outer frame will be the border
for all the toggle frames. Inside each toggle frame, you define controls in the normal way.

Y ou must select just one of the toggle frames to beinitially visible. Thiswill correspond to the checked radio
button or pressed toggle button. The remaining toggle frames and their controls should all be defined using
the CA_Hi dden attribute.

Y ou then hide and unhide toggle frames by responding to the vhi al og: : Di al ogCommrand messages generated
when aradio button or toggle button is pressed. You Set Val ue(togl D, 1, Val ue) to show atoggle pane
and all its controls, and Set Val ue(t ogl D, 0, Val ue) to hideall its controls.

The following example shows how to define and control toggle frames:

enum {Ibl1l = 400, tbtl, tbt2, tbt3, frml, tfrl, tfr2,
bt nAl, btnBl, btnA2, btnB2 };
stati c ConmandChj ect Defaul t Crds[] =
{
/1 Alabel, then 2 toggle buttons to select toggle franes
{C_Label ,Ibl 1,0,"Tab Frame Deno", NoLi st, CA None, i sSens,
NoFr ane, 0, 0},
{C_Toggl eButton,tbt1,1,"Tab 1", NoLi st, CA_None, isSens,
Ibll, 0, 0},
{C_Toggl eButton,tbt2,0,"Tab 2", NoLi st, CA _None, isSens,
I bl1, tbt, 0},
{C_Toggl eButton,tbt3,0,"Tab 3", NoLi st, CA_None, isSens,
Ibl1, tbt2 0},

/1 A Master franme to give uniformborder to toggle franes
{C Frame, frml, 0, "", NoList, CA None,isSens,|bll1,0,tbt1},

/'l Toggle Frame 1 - default frame on
{C Toggl eFrane, tfri1,1,"", NoList, CA NoBorder,isSens,frmi, 0, 0},
{C Button, btnAl, 0, "Button A(1)", NoLi st, CA_None,isSens,tfr1,0, 0},
{C Button, btnB1, 0, "Button B(1)", NoLi st, CA_ None, isSens,tfr1,

0, bt nAl1},

/'l Toggle Frame 2 - default off (CA_Hidden!)
{C_Toggl eFrane, tfr2,0,"", NoLi st, CA_NoBorder | CA Hi dden,

CommandObject Commands 162

The V C++ GUI Reference Manual

i sSens, frmt, 0, 0},
{C Button, bt nA2, 0, "Button A(2)", NoLi st, CA_Hi dden,isSens,tfr2,0, 0},
{C Button, btnB2,0,"Button B(2)", NoLi st, CA_Hi dden, isSens,tfr2
bt nA2, 0},

{C EndCf Li st, 0,0, 0,0, CA None, 0, 0, 0}
}s

/1 I'n the Di al ogConmand net hod

switch (id) /1 W will do some things depending on val ue
{
case tbt1: /'l For toggle buttons, assunme toggle to ON
{
Set Val ue(i d, 1, Val ue) ; /1 turn on toggle button
Set Val ue(tbt 2, 0, Val ue) ; /1 other one off
Set Val ue(tfr2,0, Val ue); /'l Toggle other frane off
Set Val ue(tfri, 1, Val ue); /'l and ours on
br eak;
}
case tbt2: /1 Toggle 2
{
Set Val ue(i d, 1, Val ue); /1 turn on toggle button
Set Val ue(tbt1, 0, Val ue); /] other off
Set Val ue(tfr1l, 0, Val ue); /'l Toggl e other off
Set Val ue(tfr2,1, Val ue); /1 and ours on
br eak;
}
}

/1 Al'l commands should al so route through the parent handl er
vDi al og: : Di al ogCommand(i d, retval , ctype);
}

C_TogglelconButton

®

A C Toggl el conButton i S a conbination of an icon button and a checkbox. Wen the toggle
icon button is pressed, the vordWw ndow : WndowConmand nmethod is called, just as with a
regul ar icon button. However, the systemw || change the | ook of the toggle icon button
to indicate it has been pressed. This is useful for good | ooking icon based interfaces
to indicate to a user that sonme option has been selected. An additional press will
change the appearance back to a normal icon button. The retval field of the

Commandvj ect definition is used to indicate the initial state of the toggle

The behavior of atoggle icon button is like a check box, and not aradio button. Thisis more flexible, but if
you need exclusive radio button like selection, you will have to enforce it yourself using
Set Val ue(toggl el d, val , Val ue) .

/1 Define a toggle icon button with id tibToggle and
/1l an initial state of 1, which neans pressed
{C_Toggl el conButton,tibToggle, 1,"", CA_None

CommandObject Commands 163

The V C++ GUI Reference Manual
i sSens, NoFrame, 0, 0},

/1l The case in WndowConmand shoul d be like this:

case tibToggl e:
{
/'l Always safest to retrieve current val ue
Itemval curval = GetVal ue(tibToggle);
/1 Now, do whatever you need to
if (curval)
it is pressed

el se

. it is not pressed

br eak;

Footnotes:

1 Thisis necessary keep things as char s and still allow a possible 256 entries, since 256 is 28+1, and a color
map with 0 entries doesn't make sense.

CommandObject Commands 164

Standard V Values

Predefined ItemVals

A useful collection of predefined values. Most are useful for defining dial ogs, buttons, and
menus.

Predefined ItemVals

A useful collection of predefined values. Most are useful for defining dialogs, buttons, and menus.

Synopsis

Header:

<v/v_defs. h>

Description

When defining dialogs, menus, and command bars, you are required to provide an id for each item. There are
many common operations used in GUI designs, and V provides various predefined values for building your
programs. The natural interpretation of most of these values should be obvious, and the descriptions are kept
to aminimum. Most of the definitions describe the accepted practice for menu or button items with the given
title. While these I t enval s can be used anywhere, some have ““standard" usage.

Control Values

M _About Shows an informative message about current application.
M_AIll Select all.

M _Cance Cancel. Usually used with adialog. V will automatically reset dialog commands to their original
state when aM Cancel isselected from avbi al og descended object.

M _Clear Used to clear a screen.

Standard V Values 165

The V C++ GUI Reference Manual

M _Close Used to close afile. The user is usually prompted to save or ignore changes if any were made to the
file. Thisisusually not used to close a menu.

M _Copy Copy the highlighted text or item, and save into the clipboard.

M _Cut Cut the highlighted text or item from the file, and usually save into the clipboard.
M _Delete Delete the selected item or text - usually does not copy into the clipboard.

M _Done Done with operation.

M _Edit Typically amenu bar button to pulldown an edit menu.

M _Exit Exit from the program - checking to seeif files need to be saved, of course.

M _File Typically amenu bar button to pulldown afile menu.

M _Find Find a pattern.

M _FindAgain Find pattern again.

M _Font Typicaly amenu bar button to pulldown afont menu.

M _FontSelect Select afont. (Thisis different from the M_Font valuein that M Font isintended asamain
menu bar item, while this oneis for a pulldown menu.

M _Format Typically a menu bar button to pulldown a format menu, which allows the user to select
formatting options.

M _Help Show help.
M _Insert Typicaly amenu bar button to pulldown an insert menu.

M_LineM_Lineisone of afew of these values that gets special treatment by the system. It isrequired for
defining line separators in menus.

M _New Used to create anew file.

M _No Answer No.

M _None Select none.

M_OK OK, accept operation or information. Causes return from dialog.

M _Open Used to open an existing file.

M _Options Typically amenu bar button to pulldown an options menu.

M _Paste Paste the contents of the clipboard into the insertion point of the current file or item.

M _Preferences Set preferences.

Standard V Values 166

The V C++ GUI Reference Manual

M _Print Print current file.

M _PrintPreview On screen preview how the current file would look if printed.
M _Replace Replace pattern.

M _Save Used to save current file in its current name.

M _SaveAs Save current file under new name.

M _Search Typically amenu bar button to pulldown a search menu.

M _SetDebug Set debug stuff.

M_Test Typically amenu bar button to pulldown a test menu.

M _Tools Typically amenu bar button to pulldown atools menu.

M _UnDo Undo the last action.

M _View Typically amenu bar button to pulldown aview menu, which allows the user to select different
views of the document.

M_Window Typically amenu bar button to pulldown a window menu, which lets the user select different
windows.

M_YesAnswer Yes.

Version Values

A useful collection of predefined values to determine the version of V and the platform.

Synopsis
Vdefines several values useful for determining the revision of V, and the platform Vis compiled on.

Header:

<v/v_defs. h>

Version Values

Standard V Values 167

The V C++ GUI Reference Manual

V_VersMajor The mgjor version of V, such as 1.

V_VersMinor The minor release of V, such as 12.

V_Version A text string describing the version of V, such asV 1.12 - 8/4/96.
V_VersionX Defined if theisthe standard X version of V.

V_VersionMatif Defined if the Motif version of V.

V_VersionWindows Defined if the Windows version of V.
V_VersionWin95 Defined if the Windows 95 version of V.

V_VersionOS2 Defined for the OS2 version of V.

Standard V Values 168

Symbolic Key Codes

Synopsis

Header:

<v/vkeys. h>

Description

Because each platform defines values of keys differently, V provides its own symbolic set of key code values.
V uses the standard ASCI 1 values for the normal printing keys below the value 0x80. The following are the

symbols defined for other key codes:

VKM _Shi f t VKM Ctrl VKM Al t
vk_BackSpace vk_Tab vk_Li nef eed
vk_Return vk_Pause vk_Escape
vk_Del ete vk_BackTab vk_Hone
vk_Left vk_Up vk_Ri ght
vk_Down vk_Page_Up vk_Page_Down
vk_End vk_l nsert vk_KP_Ent er
vk_KP_Hone vk_KP_Left vk_KP_Up
vk_KP_Ri ght vk_KP_Down vk_KP_Page_Up
vk_KP_Page_Down vk_KP_End vk_KP_I nsert
vk_KP_Del ete vk_KP_Equal vk_KP_Mil tiply
vk_KP_Add vk_KP_Subtract vk_KP_Deci nal
vk_KP_Di vi de vk_space vk_asciitilde

vk_KP_0 - vk_KP_9
vk_F1 - vk_F16

See Also

vWindow::Keyln

Symbolic Key Codes

169

Miscellaneous Utilites

bmp2vbm

The utility bnp2vbmconverts a Window or OS2 . bnp format bitmap file into a. vbnVicon bitmap format
file. The. vbmfileisthen used with avi con object definition. The brp2vbmutility will not convert all
. bnp files. Specificaly, it can't handle old format . brp files, nor can it handle compressed . bnp files.

Windows has many toolsto generate . bnp files. For X, the widely available tool xv can generate . bnp files
from various source formats.

Bp2vbmis a command line tool - run it from a Unix prompt, or from an MsDOS box on Windows. The
command line format is. brp2vbm i nput name out put name i connarne. Y ou should specify only the base file
names. bnp2vbmwill automatically supply the . bnp and . vomextension. Thei connane specifies the name
used to generate the date (e.g., i connanme_bi t s).

Other Utilites

Thedirectory v/ i cons includes over 30 different monochromeiconsin . vbmformat suitable for building
command pane tool bars. Most of these icons were derived from various Windows sources, and | would
encourage their use for the standard functions they define. Some of these include creating a new file
(new.vbm), opening an existing file (open.vbm), cut, copy, and paste (*.vbm), printing (print.vbm), and so
on.

Thereisademo programinthev/ i cons directory that can be compiled and used to see what all the icons
look like. All theicons are 16 by 16 bits, and will match standard buttons in height on Windows. The height
of standard buttons on X depends on the default system font.

As usual, contributions of other Vicons is more than welcome. | hope to build up the icons directory to
several hundred icons.

Miscellaneous Utilites 170

V Application Generator

The V Application Generator will automatically generate C++ code needed to build asimple V application. It
has severa options that let you specify the name of the application, the name of your derived classes, and
what V interface elements to include in the application. The V Application Generator, vgen, does not generate
code that does any real work, it just provides a very good starting skeleton program to build your application.

On approach for beginning a new V application isto copy one of the example programs, and modify it.
Vgen has the advantage of allowing a certain amount of customization with names and interface elements
included in the basic skeleton program.

Vgen will generate the skeleton code and a makefile compatible with GNU make. On the Windows version,
vgen will generate a makefile compatible with mingw32. If you use a different compiler, it isup to you to
build a project file for your compiler. Thisisusually avery trivial operation.

Once you have generated and compiled the skeleton application, you can maodify the code to build your own
application. It is highly recommend that you start every new V application this way to get a consistency in the
structure of the code.

Overview

Vgen isavery ssimple program to use. Y ou run it, and then select if you are generating a standard V\
application skeleton, or if you are generating an extra dialog skeleton to add to an existing application.

The most common use of vgen isto generate a standard V\ application skeleton. This consists of a derived
vConmandW ndow class with a simple menu bar, a command pane with a sample button, a derived
vCanvasPane, and a status pane. The standard V skeleton also alows you to generate a model ess and a modal
dialog. Y ou can specify the name of the classes you want to use, as well as the file names to use for each of
the generated files. The standard files generated include afile for the derived vApp class, afile for the derived
vCmdW ndow class, afile for the derived vCanvasPane class, and files for the dialogs. vgen aso generates a
GNU compatible makefile.

Vgen also will generate extra copies of dialogs. Y ou can specify the class name of the dialog, and then
generate a skeleton file. These dialogs must be added manually to the basic skeleton application.

The remainder of the reference manual will explain each menu item and each dial og.

File Menu

The file menu only has an Exit command, which closesvgen.

V Application Generator 171

The V C++ GUI Reference Manual

Generate Menu

The Gener at e menu selects which type of code you want to generate. These are duplicated on the tool bar.

Generate:Standard Application

This option brings up adialog that controls the generation of a standard V application. This section will
explain each option contained on the Standard V App dialog.

When vgen generates a skeleton application, it uses some fixed conventions for naming derived classes and
file names. The Application Base Name input lets you specify the base name of each class. The default base
nameisny. Thus, vgen will generate the derived class names ny App, my CrdW ndow, ny CanvasPane Of
myText CanvasPane, nmyDi al og, and nyMdal Di al og.

The File Base Name input lets you control the base name of the generated code files. If you intend to do
development for Windows, it is recommended that you specify a name that follows the 8 character limit on
file base names. Using the default ny file base name, vgen will generate the files myapp. cpp and nyapp. h,
mycrmdw. cpp and mycrdw. h, mycnv. cpp and nycnv. h, nydl g. cpp and nydl g. h, and nyndl| g. cpp and
mymdl g. h. If you generate a makefile, it will be called makefil e. ny.

The generate dialog allows you to control which interface elements are included in the generated code. The
first section of the dialog controls the Command Window options. Y ou can elect to include atool bar and a
status bar. Y ou can also include code that shows the date and time on the status bar if you wish. Y ou can
control if the code generates Windows MDI or SDI model code (this has no effect on the X code). The
command window class includes a short, standard menu bar that you can later modify to add your own menu
items. Y ou can also specify atitle that will appear in the app'stitle bar. Finally, you can have vgen generate
code that implementsavTi mer in the CommandWindow. Thisis most likely to be useful for OpenGL apps.

The second section of the dialog controls the generation of the canvas pane. Y ou can generate a canvas pane
derived from avCanvasPane, avText CanvasPane, Or avBaseG.CanvasPane. Y ou aso have the choice of no
canvas pane at all. If you select no canvas pane, then your app must have atool bar. Y ou can elect to show
the vertical or horizontal scroll bars by default.

Y ou can also control generation of amodal and a modeless dialog. If you include these, code to activate the
dialogs will beincluded in the menu bar. Y ou will usually modify that code to activate the dialogsin a
manner needed by your application.

Y ou also have the option of generating a GNU make compatible makefile. The make file needs to know
wherethev/ i ncl ude and V library files are found on your system. On Unix-like systems, the default

vgen assumes that these will belocated in/ usr/1 ocal / v. Thereisavariable, HOVEV in the makefile that sets
thispath. If V isfound in adifferent place, you can changeit in the generate dialog, or you can change an

i f def inthe source code and recompile vgen. In the MS-Windows version, vgen assumes you are using
mingw32 installed on C:, with the Vlibraries and includes also installed in the mingw32 path.

Finally, you can control where the generated files are written. The Set Save Path brings up the standard file

selection dialog for where to save the nyapp. cpp file. That file and the others will be saved in whatever
directory you specify. If you don't specify a save path, the files will be saved in the startup directory.

V Application Generator 172

The V C++ GUI Reference Manual

When you have made all your selections, the Generate button will generate the skeleton application.

Generate:Extra Dialog

Many applications need more than one modeless or one modal dialog. Vgen's solution to thisis not super
sophisticated, but it is easier than modifying an existing dialog from scratch. The Extra Dialog generate
command allows you to generate extra dialog classes that you can then manually add to your main
application. The dialogs generated are just like the dialogs that the generate standard app builds, but with a
different base name. The optionsin this dialog include set the class and file base names, the title, modal or
modeless, and the save path.

V Application Generator 173

V Icon Editor

TheV |lcon Editor

The V Icon Editor is atool used to create and modify icons. It is
intended chiefly to create icons for the various V controls that
useicons. It has many editing features found in other icon or
bitmap editors, but because it is intended chiefly as an icon
editor, it is limited to icons with a maximum size of 150 pixels
square and will easily manipulate up to 64 colors, although it
will display icons with up to 256 colors. Typically, however,
icons tend to be less than 64 pixels square, and use a limited
number of colors.

The current version of the V Icon Editor will handle the native VVvBMicon format, as well as xBMand XPMX
Windows format files, and Windows BvP format files, so files generated by the X and Windows host
platforms can be easily edited and converted to vBMformat.

The V Icon Editor was originally developed as ateam project for the Spring, 1996 Software Engineering
class at the University of New Mexico by Philip Eckenroth, Mike Tipping, Marilee Padilla, and John Fredric
Jr. Masciantoni. It has been heavily enhanced by Bruce Wampler. Although this program makes use of many
V\ features, as alargely student project, the quality of the code is somewhat variable, especialy in its use of
objects.

Overview

The icon editor functions very much like other similar programs, and should be easy to use. This guide is not
intended as a complete tutorial, but more as a brief, but complete, reference.

The V Icon Editor will usually be called vi coned. It may be started with the name of afile to edit on the
command line.

The interface to the V Icon Editor consists of a standard menu bar, two tool bars, adrawing canvas, and a
status bar. The most common operations are supported by the tool bars (which, for the most part, duplicate
menu commands). The drawing canvas shows an enlarged view of the icon as well as an actual size view of
theicon. The enlarged view may be zoomed to several sizes, and displayed with or without agrid. The
remainder of this guide will describe each menu command, and other features that can be invoked from the
tool bars.

Y ou draw an icon using one of three types of brushes: the normal brush, the text brush, and the copy/paste
brush. The brush will draw in one of several shapes. Not all shapes work with all three brushes, but you can
get some interesting effects using the text or copy/paste brush to draw aline or rectangle, for example. The

V Icon Editor 174

The V C++ GUI Reference Manual

normal brush also has a choice of several sizes and styles. Drawing with the left mouse button uses the
foreground color, while drawing with the right mouse button selects the background color. Colors are
selected with the color selection dialog.

File Menu

The File menu generally includes commands needed to open, close, and manipulate icon files.

File:New

Thiswill create a new icon using the current canvas. If the current icon has been changed, you will be asked
if you want to saveit. Then you will be prompted for the size of the new icon. A blank icon of the specified
size will be created, and the color palette initialized to a set of default colors.

File:Open

This command is used to open an existing icon in one of the supported formats. If the current drawing canvas
has been edited or had an icon loaded, a new canvas window will be opened. The color palette for the canvas
window will beinitialized to the colors used in the opened icon.

The format of the icon is determined by the file extension. vBMis the native Vbitmap format, and is the format
required by the various Vicon controls. The current version only supports the 1 and 8 bit vBMformats.

Vi coned also supports the X Windows xBMmonochrome bitmap files, and xPmcolor pixmap files (up to
about 90 colors). The Windows BvP bitmap format is supported for 8-bit bitmaps. All icons are limited to a
maximum of 150 by 150 pixels.

File:Save

Thiswill save the current icon. If theicon was new, you will be prompted for afile name.

File:Save as

Y ou will be prompted for a name to save the current icon. The format of the saved icon is determined by the
file extension. vBMspecifies the standard V icon format. Vi coned will automatically save either the
monochrome 1-bit vBMformat, or the 256 color mapped 8-bit vBMformat. The 24-bit vBMformat is not
supported. The other formats supported include X xBMmonochrome bitmaps, and X xPMcolor pixmaps up to
about 90 colors. The Windows BvP bitmap format is supported for 8-bit bitmaps.

When vi coned savesanicon, it will minimize the size of the color map used in thefile.

V Icon Editor 175

The V C++ GUI Reference Manual

File:Close

Thiswill close the current icon, asking you if you want to save it if it has changed, and then clear the drawing
canvas, ready to create a new icon, or open another icon.

File:About

This displays a dialog with information about vi coned.

File:Exit

All openiconswill be closed, with save prompts as needed, and vi coned will exit.

Edit Menu

The current version of vi coned does not yet support standard cut, copy, and paste operations. (It does have
copy/paste brush support described later.)

Edit:Undo

Thiswill undo the last operation that changed the icon. Only one level of undo is supported.

Edit:Clear

Thiswill clear the current icon to the background color. A clear is not undoable!

Edit:Resize

Y ou can resize the existing icon to anew size. The upper |eft corner of the current icon will remain constant.
If you specify asmaller icon, you will lose the lower and right portions. If you specify abigger size, then the
current icon will become the upper left corner of the new icon. Y ou may find the copy/paste brush useful
when resizing an icon.

Draw Menu

V Icon Editor 176

The V C++ GUI Reference Manual

The Draw menu is used to select the shape of the brush. The normal brush will draw the selected shape using
the current normal brush style. The text brush will draw the shape using the current text. The copy/paste
brush will draw the shape using the copied shape.

Using the left button selects the foreground color, while the right button selects the background color.

The shape selections are duplicated on the tool bar for easy interaction.

Draw:Point

Thisdraws asingle point, or instance of the text or copy/paste brush. Holding the mouse button down and
moving will draw a series of points.

Draw:Line

The button press selects the starting point of the line, and the rel ease selects the end point.

Draw:Rectangle

The button press selects the first corner of the rectangle, and the rel ease the opposite corner. If snap ison,
then thiswill draw a sgquare.

Draw:Rounded Rectangle

Thisis arounded rectangle instead of a square cornered rectangle.

Draw:Ellipse

Thisdraws an ellipse, or acircle with snap on.

Draw:Pick Color

Thisletsyou pick a color from the current icon. Pressing the left button will make the color under the cursor
the current foreground color, while the right button will pick the background color. Using the pick color (a
dropper icon on the tool bar) is often easier than using the color selection dialog.

Draw:Fill

V Icon Editor 177

The V C++ GUI Reference Manual

Thiswill fill the closed area with the foreground or background color depending on the mouse button
pressed.

Draw:Refresh Image

Normally, this command should not be needed, but it will cause the icon to be redrawn.

Draw:Show Grid

Thiswill turn on or off the display of the drawing grid.

Brush Menu

These select the type of brush to use. Brush selection is duplicated on the tool bar.

All three brushes actually use the same mechanism - a general brush that can hold a pattern to draw onto the
icon. A regular brush is usually a pattern of a single pixel, but can be any of the patterns supported by the
brush style dialog. The text brush uses text to make the pattern. The copy/paste brush set the pattern based on
a selection from the current icon.

Y ou can get some interesting effects by using different brush shapes (point, rectangle, etc.) when drawing

with any of the brushes. Using the point shape and then dragging with the mouse held pressed can yield
shadow effects, for example.

Brush:Regular Brush

The regular brush draws the currently selected shape using the current regular brush style. The stylesinclude
asingle pixel point, aswell as square, line, and circular shapes of various sizes. The regular brush styleis
selected from the brush dialog, which istoggled on and off from the tool bar.

Brush:Text Brush
When you select the text brush, you will be prompted for some text, which will then become the brush. Y ou

can then position the text, and press the right or left mouse to draw the text in the icon.

Currently, only upper and lower case a phanumerics are supported, and some of the letters don't quite look
right.

V Icon Editor 178

The V C++ GUI Reference Manual

Brush:Copy/Paste Brush

Right after you select the copy/paste brush, you will need to select an area of the current icon to "copy". This
then becomes the brush, and you then draw the brush into the icon by pressing the right or |eft mouse buttons.

Zoom Menu

Vi cone will display the icon zoomed from two up to 32 times the size of the actual icon. Use the zoom menu
to select the zoom factor.

Tool Bars

There are two tool barsin thevi coned interface. Thefirst tool bar shows the current foreground and
background colors on the |eft side. The next icon on thistool bar isthe "snap" toggle. When pressed, drawing
with the rectangle brush shape will draw squares, and the ellipse shape will draw circles. The next iconisthe
brush toggle, and will display the brush style dialog. The next icon is the color selection toggle, and will
display the color selection dialog. These three toggles do not have corresponding entries on the menus. The
right end of the first tool bar show three toggles to select the regular, text, and copy/paste brushes.

The second tool bar contains buttons for clear and undo, as well as toggles for selecting the brush shape. All
these are duplicates of menu commands.

Color Selection Dialog

The color selection dialog is used to pick and select foreground and background colors. Internaly,
vi coned uses 256 colors for each icon pixel. Depending on the color resolution of your display, all 256
colors may or may not be available. Typically, icons do not use very many colors, so this shouldn't matter.

The color selection dialog shows alarge color square showing the current selection color. Two buttons next
to the current color square are used to apply the current selection color to the foreground or background color.

Below that is a palette of 64 small color buttons arranged in 4 rows of 16. Selecting one of these buttons
make it the current selection color. Vi coned supplies 64 default colors for new icons. Again, depending on
the color resolution of you color display, these may or may not show as 64 colors. When anew iconis
loaded, its colors are used to load the color selection color palette. Most icons won't use 64 colors, and
unused colors are filled with black.

Below the palette are three sliders that can be used to change the color. Select a palette button to change, then
use the diders to adjust the red, green, and blue. Y ou can also press the small red, green, or blue button next
to the sliders to enter a specific value for that color component. The reset button will reset the pal ette entry
back to its original color.

V Icon Editor 179

The V C++ GUI Reference Manual

Note that even though the color selection dialog only has 64 entries, the colors shown do not necessarily have
any relation to the colors used in the icon. The colorsin the icon are set by the foreground and background
colors. You can use the diders to specify any color, and then apply it to the foreground or background color.
The color selection dialog allows you to easily pick any one of the 64 palette colors.

Use only standard, basic colorsin icons (black, white, red, green, blue, etc.) to minimize the impact on the
color maps used on systems with color resolutions of 256 or less.

V Icon Editor 180

V IDE

The V Integrated Development Environment

With the use of GNU g++ on Linux, and a growing number of MS-Windows users of mingw32, the standard
Vdistribution now includes a basic Integrated Devel opment Environment (IDE) called vi DE. VI DE letsyou
compile via Makefile, and edit your source code with a generic windowing editor with C++ syntax
highlighting.

The current version of VI DE israther basic, but still provides a useful environment for devel oping programs.
Thisisavery basic overview of using Vi DE.

VI DE is currently designed to work only with GNU g++, either on a Unix-like system, or on MS-Windows
with mingw32. Operation of Vi DE is based on standard GNU makefiles. To build a project, you must have a
working Makefile - either based on one generated by vgen, or one you've written yourself.

Once you start VI DE, thefirst action normally is to select a Makefile. The opening window will be the
message window, and is used to output the results of your make. Click on the Sel M button to select a
makefile. Y ou can then run the makefile by clicking Make. This runs make with the default target (often al").
The results of the make are shown in the message window. If you get an error, you can usually right click on
the error line and the source file will be loaded into an edit window, and the cursor placed on the offending
line. This all assumes that the source and makefile are in the same directory.

After you correct the problem, clicking Make again will rerun make. On the MS-Windows version, there
seems to be some problem with GNU make and time stamps, and sometimes the final .exe target is not made
until you click vake again.

Y ou can aso make a specific target in your makefile by using the Make menu: make:Make <target>. If you
include a"clean" target in your make file, make:Make Clean will run make clean.

Thetools menu allows you to run a program (this will often be the program you just compiled. Future
versions of VIDE will be able to run your program.). Tools:Run a program will prompt you for a program to
run, or you can browse.

Tools:Run OS Shell will run aMS-DOS command window, or execute rxvt on X. Tools:V App Gen will run
vgen if itisinstaled in your PATH, and Tools:V Icon Editor will run the V icon editor.

Future versions of VI DE will include management of code projects - you will be able to specify source files,
and a makefile will be automatically generated. Y ou will also be able to customize options as needed. Work
is also being done on writing an interactive dialog builder. A V based class browser is also waiting to be
included. | also plan to include support for the gdb debugger, and probably Rcs. While future versions of
Vwill be included with V, incremental versions will be released independently.

V IDE 181

The V C++ Coding Style Guidelines

I have devel oped the following guidelines for writing C++ code over my long career as a programmer. All of
V has been written using these guidelines, and | believe that using them is a big first step leading to readable,
portable, and reliable code. Of course, just following these guidelines won't automatically give you that, but |
think they are till necessary.

Readability

The ultimate goal of style guidelinesisto help you to write code that is readable. While this means code that
is readable by you, it mostly means code that is readable by others. Remember, code has a life of its own! No
matter how small the project may seem, or how temporary, most code ends up being used and reused much
longer than you might think. The real cost of software is often in the long term maintenance. While you may
end up maintaining your own code, often it will be someone else. Even if it isyou, after afew months, or
even weeks, you will have likely forgotten just exactly what you were doing when you wrote the code to
begin with.

The point of thisis to emphasize the importance of producing readable code. Generally, readable code is
inviting to look at. It isvisually pleasing, just as awell designed book iswell laid out and visually pleasing to
look at. Your code should have plenty of visual attributes that make it easy to read. This means|ots of
whitespace, consistent indentation, abundant, well formatted comments, and visual separation of important
sections of code. Much of the structure of your code should be visually obvious without having to read it.
Many of the following guidelines are intended to help you produce readable code.

Naming

Itiscritical to choose meaningful names for your variables and functions. Avoid short, two or three |etter
names unless those names are really meaningful. While you may want to use short, abbreviated names to
avoid typing, this habit will make your code more difficult to read later. While you should avoid short names,
consistently using names that are too long can present problems, too. This can lead to code that must be split
across multiple lines because the names are too long. Even so, it is probably better to trend to overly long
names than short, abbreviated names.

Names should use both upper and lower case letters, using a case change to indicate word breaks. For
example, aname like maxLengt h is more readabl e than MAXLENGTH, max| engt h, or even max_| engt h. In

general, using mixed case is better than using underscores. Underscores are better used to indicate special
classes of variables (see Class Definitions below).

Files

Each C++ module should be split into two files - the . h header file which containscl ass definitions and
variable declarations, and a. ¢ or . cppl file that contains source code for the functions.

Generally, each classwill haveitsown . h and . cpp files. Utility helper functions that go with a class can be

The V C++ Coding Style Guidelines 182

The V C++ GUI Reference Manual

included in the same file as the class. Other functions that do not go with a class should be collected into
logical groups and kept in a separate file. In general, files should not be much larger than twenty to forty
thousand characters long.

Include Files

Include files or header files (. h) files must each have a#def i ne statement that prevents problems caused by
multiple inclusion. The standard way to do thisis:

I/

/1 nyclass.h - header file for myclass class definition
/1

#i f ndef MYCLASS_H /'l Check to prevent
#define MYCLASS_H /1 multiple inclusion

definitions go here

#endi f /1 last line of file
Files are included from the source file by placing the #include statement near the beginning of the sourcefile,
starting in column one.

#i ncl ude "nycl ass. h" /1 includes start in colum 1

Function Definitions

All functions should have a prototype definition for use by others. For class methods, thiswill be part of the
class declaration. For other functions, this should also bein a. h file. The parameters of al prototypes should
include both the type and the name of each parameter since the name often conveys extra useful information.

The body of each method or function should use this convention:

/1 62;62;62; nyd ass::nmyMet hod <<<
voi d nmyd ass:: nyMet hod(const int size)
{

/1 An introductory bl ock of conrents explaining the purpose
/1 and interface to this function. You can also include an
/1 author and nodification history here if appropriate

decl are vari abl es used throughout the function

body of function

}
Each function should include the separator line to visually separate the body of the function from othersin

the same file. The preferred indentation for the function name is two spaces, with the enclosing { and }
braces on separate lines, aso indented two spaces. An acceptable aternative style isto have these lines start
in the first column.

Following the opening { should come an introduction to the function. Variables required by the entire
function follow the opening comments. Following that is the body of the function. Make liberal use of

The V C++ Coding Style Guidelines 183

The V C++ GUI Reference Manual

whitespace for visual separation.

Indentation

The preferred indentation scheme is based on groups of four spaces, with braces indented two additional
spaces. It is acceptable to keep braces lined up with the outer statement rather than indenting two extra, but
all braces must be on aline by themselves. This spacing works well with standard eight character tab stops -
your code will either be indented on even tab stops, or on tab stops plus four.

Except for the most trivial cases of short, related assignment statements, each statement should be on a
separate line. The body of loops and conditional statements should always use braces - never use asimple
statement. There are two reasons for this. First, using braces on separate lines adds whitespace, which adds to
the readability. Second, code isinevitably modified, and by always using braces, you will be more likely to
add a statement in the proper place. As a special case for initializer loops with no code body, it is acceptable
to usejust a semicolon rather than braces.

The old K&R style of placing the opening brace at the end of the line is not acceptable. Maost importantly,
you lose the visual impact of lined up braces when you do this. It also tends to compress the code, and extra
whitespace really helps make code more readable.

When calling functions that require long, complex argument lists, it is often advisable to place each argument
on a separate line accompanied by an explanatory comment.

Use a blank between keywords and the associated left paren: i f (test). Don't put a space for function calls:
function(parany;.Don't use parensfor the returned value of ar et ur n statement. This helpsto visually
distinguish ar et ur n from afunction cal.

The following code demonstrates indentation for various C++ statements:

/1 62;62; 62; sanple <<<
int sanple(int action)
{
/'l Thi s neani ngl ess sanpl e denpnstrates indentation.
/1 The code should not considered to do anything useful
/'l other than denpnstrating indentation.

char* nane; /'l explain each variable
int set; [/ with useful comrent
if (action) /1 indent 4, space after if
{ /1l the { in 2
set = doSonet hi ng(action);
} /'l always use {}'s
el se
{
set = Sonet hi ngEl se(action);
}
switch (set) /'l exanple for swtch
{
case 1: [/l case in +4 fromsw tch

{ /| always use braces for cases!
get Nanel(nane);

The V C++ Coding Style Guidelines 184

The V C++ GUI Reference Manual

br eak;
}
case 2: /1 Try to comment each case
{
int tenp = len(nane); // try to declare as needed
fi xNane(t enp, nane) ;
br eak;
}
def aul t: /1l CGood idea to have default
br eak;

/1 Prefix some blocks with comrents like this

/1 to describe what a section of code does

/1 Note that 'char* cp' is preferred to 'char *cp'
/'l Take advantage of C++ scope rules, and declare

/1 variables (e.g., len) as close to use as possible.
for (int len = 0, char* cp = nane ; *cp ; ++cp)
{
++l en; /1 all |oops use {}'s
tryThat (set, cp); /1 and neani ngful comments
}
while (IsStill OK(nane)) /1 indent like for
{

Conpl ex(nane, /'l a conplex function cal
set, /1 can explain each paraneter
| en); // for easier mmintenance

}
int status = (checkNane(nane)) ? len /'l sample ?:
len / 2;
return status; /'l no parens on return
}
Comments

It isdifficult to over comment your code. Comments are one of the most helpful things you can do to make
your code easier to maintain. A 1to 1 ratio of comments to code should be considered a bare minimum, with
aratio of more comments than code probably a better thing.

| claim it isamost impossible to have too many comments. A few expert programmers may disagree with
this philosophy, and say that well written code can be self-commenting. The problem isthat thisis not really
true. Assume, for example, that you are using a standard software library, such as xt or V. You may know the
library backwards and forwards, and it may seem perfectly clear to you what some code is doing. But assume
that someone else will be maintaining the code later. They may not know the library aswell, and what is
obvious and self-commenting to you will be gibberish to them. A few well placed comments explaining what
you are doing will be very helpful.

In order to write really effective comments, you must comment as you write the code! Do not go back and
add comments after the code is written. Y ou can go back and improve and expand your comments, but you
should comment as you go. A few seconds taken to add a comment as you write the code can save many
minutes or even hours later.

The V C++ Coding Style Guidelines 185

The V C++ GUI Reference Manual

Comments should be meaningful and correct. If you change code, be sure you change the comments to
correspond! |f you are in the habit of commenting as you write, thiswill not be so hard.

Make the layout of your comments visually pleasing. Use whitespace to separate sections of code. Line up
block comments near the |eft, and try to keep short per line comments lined up on the right without going too
far right. Line them up on atab stop if possible.

Above all, remember that what seems obvious to you at the moment is likely to be forgotten even aweek or
two later. And keep in mind that someone elseis likely to modify or study your code later. Don't keep
secrets. If you had to look something up, or have other information that might make the code more
understandable, put that in acomment. If you are doing something tricky or obscure (which you should
avoid, but sometimes can't avoid), explain what is going on! Y ou might be teaching avaluable trick to
whoever is working with your code later!

My own code has more comments than almost any other code |'ve seen. Time after time, when someone else
has had to use or maintain my code, |'ve gotten feedback that it is very easy to understand and modify. |
attribute much of this positive feedback to the abundant comments found in my code.

Class Definitions

The standards for class definitions are based on keeping braces on separate lines, and on not using implicit
assumptions. Thus, aclasswill have braces on separate lines, either indented two (the preferred style), or
lined up with the class statement.

There should aways be all three publ i c, pr ot ect ed, and pri vat e sectionsin that order, even if asectionis
empty. This order assumesit is more useful to have the public stuff at the top for easier readability. And even
if asection isempty, that conveys information about the definition of the class. The prototypes for member
functions should include both the type and name (e.g., i nt OnOr O).

There should amost never be public access to class variables. Provide methods to access and set variables of
the class. Y ou may find it helpful to prefix class variables (especially private class variables) with an
underscore (_variableName) to indicate the variable is private to the class.

The following example shows indentation and layout of a class definition. Note the visual separator for
public, protected, and private, and the alignment with the braces.

class nyd ass : public superd ass /'l name here
{
friend int FriendFunction(int ival); // friends at top
public: N T public

nyd ass(); /1 constructor and destructor
virtual ~nydass(); // first

/'l sinmple nmethods can be inline
int getval () { return _val; }
virtual void service(int iParan); /'l prototype

protected: //------------aomaa oo protected

The V C++ Coding Style Guidelines 186

The V C++ GUI Reference Manual

/'l even an enpty section conveys information
private: N LR private

int _val; /1 _ for class variables
H
C++ Language Features

With C++, it is preferred to use const definitions of symbolic values rather than #def i nes.

Useconst parameters whenever possible.

Declare variables as you need them, preferably inside a code block, rather than al at the top of afunction.
This makes your code much more maintainable, and helps avoid errors introduced by bad reuse of avariable,

especially in loops.

For each new operation, there must be a corresponding del et e operation. These new and del et e pairs will
often be found in the constructor and destructor for your objects.

Always define copy constructors and an assignment operator for each classif they use pointers and dynamic
memory allocation using new. Some of the biggest problems in C++ code involves objects with pointersto
dynamically allocated space. Y ou should use either deep copy semantics or reference counts to avoid creating
objects with dangling pointers.

When using V use the debug macros as much as possible. It is especially helpful to use User Debug statements
in constructors and destructors.

Software Portability

Always remember that your code might someday be ported to a different system. Keep thisin mind when
writing your code. These guidelines will help to make your code more portable.

Don't use nonstandard or nonportable language features. For example, templates are not yet universally
portable. Avoid using them.

Use restrictive names when naming files. The most conservative approach is to use single case names limited
to 8 characters for the name part, and 3 for the extension. This should get better as time goes by, but for now
thisisstill apretty good idea.

If you must use system calls, abstract them and isolate them in a single place.

Don't go behind the back of V to access X directly.

Avoid conversions that are Big and Little Endian dependent. If you need them, isolate them.

The V C++ Coding Style Guidelines 187

The V C++ GUI Reference Manual

Footnotes:

1 The naming conventions for C++ source files has not really been standardized yet. Common alternatives for
.cpp include .C and .cxx.

The V C++ Coding Style Guidelines 188

V Class Hierarchy

The following figure is shows the internal organization of the V\ class hierarchy. Note that boxes with a
double line edge denote classes that have object instances, while boxes with single line edges are abstract
classes used to build subclasses. Most of the time, you won't care about these abstract classes.

Also note that the classes derived from vCd represent the classes used to implement command objects.

Normally, you won't need to used these classes directly. Instances of these objects are generated by V from
your CommandQbj ect declarations when you call AddDi al ogCnds.

V Class Hierarchy

TheV GUI Class Hierarchy

£ = inheritance
N = aggregation

f vFont vBaseWindow
\ \
{ «Window | { «CradParent |

vDialog

vFileSelect
vINoticeDialog
vReplyDialog
v¥NReplyDialog

"vButtonCrad,
vCheckBoxCrad
vCornboBoxCrad
wFrarneCrad
vLabelCrad
vListCrad

wProgressCrad
vRadioButtonCrad
+S1idexCrad
vTextCrad
vTextInCrad
¥ValueBoxCrad

E

2

{ vCanvasPane |

7

vMerwPane |

{ vStatusPane |

{ vCoraroandPan: |

=

vTextCanvas

i !
1 ¥Crad

V — 4 Portable C++ GUI Framework

189

The V C++ GUI Reference Manual

V Class Hierarchy 190

Platform Notes

X Window System

The current X implementation of V uses the Athena widget set with some modified versions of some widgets
from the Xaw3d widget set. The Motif version was developed with LessTif, but there doesn't seem to be too
much demand for this version, and so the support has been minimal. | will support it more fully if someone
who wants to use it will put in the time to help track down the few remaining bugs.

Compilers

The makef i | e provided with V usesthe GNU C++ compiler, g++. V does not use templates or other C++
features that can cause portability problems. The current version has been built and tested using g++ Version
2.8 dthough it did work back to Version 2.6.3, but not earlier versions. There is no inherent reason that

V should not compile with other C++ compilers.

The X Makefile

The Makef i | e isthe main way to build X versions of V. It has comments that should help you to build the X
version of V. See the [ngtallation for more instructions for installing V on a* nix platform. All of the
customizations for a given platform have been isolated into one of the configruation files Conf i g. nk in the
/vl Confi gs directory.

V has successfully been compiled on most current X platforms available, including Linux, SunOS, Solaris,
AlX, SGls, and DEC Alphas. The standard distribution includes a Makef i | e that can be easily configured for
these platforms. The makefile requires GNU make! The secret isto examine Conf i g. nk and add and modify
the definitions at the beginning as needed for your platform. (For Linux, thiswill usually be ano op, since
Linux isthe default configuration.) Examine the definitions already there, and then add a section with the

locations defined as needed for your platform. Then use an ARCH= definition on the make line (or make your
platform the default.)

X Resources
V makes limited used of X resources. The main use is to define the basic color schemes for controls and
dialogs. The following resources are used:
vDialogBG
The color used for the background of dialogs and command bars.
vStatusBarBG

Platform Notes 191

The V C++ GUI Reference Manual

The color used for the background of the status bar.
vMenuBarBG
The background color of the menu bar and menu drop downs.
vControlBG
The background color for some controls, such as sliders and scroll bars.
vControlFace
The color used for the faces of various controls such as buttons.
vLightControl Shadow
The color used for the light shadow on 3D controls.
vDarkControl Shadow
The color used for the dark shadow on 3D controls.
By varying just the above X resources, you can really change the visual look of your V app. The
/vl sr cx directory contains several files of the form vRes* that contain various color schemes. The default

color schemeiscontained in vResDef aul t (but you don't need to load it - it isthe default). Thefile
vResBl ueM f containsthe color scheme similar to Motif. Thisis the contents of vResDef aul t :

*vDi al ogBG gray75

*vSt at usBar BG gray80
*vMenuBar BG gray70
*vControl BG gray80
*vControl Face: gray70

*vLi ght Cont r ol Shadow. gray87
*vDar kCont r ol Shadow. gray50

To use one of these, or your own, resource files, you can use the command xr db - mer ge vResCol or schene.
Y ou can aso add the linesto your . Xr esour ces file.

The X program name is the name you supply to the vApp constructor.

X Bugs

The PostScript print driver does not draw shapes with hatched brushes.
The PostScript drawing canvas does not support CopyFr onvierror y DC.

Source code uses two naming conventions - . cxx and . cpp. Ghu g++ version 2.6 and later support both file
extensions. G++ version 2.5 doesn't like . cpp, so you might have to rename those filesto . cxx,

There seems to be problems with colors on X Pseudocolor systems.

Platform Notes 192

The V C++ GUI Reference Manual

Microsoft Windows

The current implementation of V for MS-Windows is for Windows WIN32 (Windows 9x and NT). Asof V
1.21, official support for Windows 3.1 has been dropped. It isunknown if V actually still works or not on 3.1.
We will refer to thisversion as vwi n in this description. The Windows version of V is availablein the
standard distribution tar file on the V ftp site. You will need aversion of gunzi p andt ar to extract V. These
are available on the ObjectCentral ftp site as well.

Directories

The directory structure of V under MS-Windows is similar to the X version. On the distribution, the
MS-Windows hierarchy is found under the/ v directory. (We will use Unix / notation for filesinstead of the
usua MS-Windows backslash notation. Most M S-Windows compilers handle the / correctly, and / is used
throughout the V source files.) When you unzip the archive, a subdirectory / v will be built.

Under / v are/ bi n/ wi n for the example V MS-Windows binaries, / dr aw for the VDraw example program,

/ exanp for asimple example program, / i ncl udew v for the V. h header files, / 1 i b/ wi n for the
MS-Windows compiled library, / obj / wi n* for the object files, / sr cwi n for the MS-Windows version of the
source code, / t est for the test driver program, and / t ut or for the source code to the tutoria included in this
reference manual.

For MS-Windows, the V library source filesuse a. cpp extension. The example programs also use . cpp. The
source for most of the example programsisidentical for the MS-Windows and X versions! However, the
source for thelibrary . cpp and . h files are different for each platform, so you must be careful not to mix the
X and MS-Windows versions of source code and header files.

Compilers

V has been successfully been compiled using Borland C++ 4.5 for Win3.1 and WIN32; Borland C++ 5.02 for
WIN32; Watcom 10.6 for Win3.1 and WIN32; the GNU-WIN32 gnu g++ compiler (both with Cygwin and
mingw32); and Microsoft Visual C++ under severa versions.

Several Borland . i de filesareincluded on the directory / vwi n/ beei de. The. i de filesassume V is built on
drive C:, so you may have to modify it if you want to build V on your own system. If you are using another
compiler, then you need to compile every. cpp file found on the/ sr cwi n directory.

Project files for compiling with Watcom C++ are included in the directory v/ wat com Unlike the Borland
versions, the object code and libraries are built directly on these wat comdirectories.

The required changes and makefiles required for the ni ngwd2 compiler will be made available on the Vweb
site.

MDI/SDI Models

Platform Notes 193

The V C++ GUI Reference Manual

V for MS-Windows supports both the MS-Windows MDI and SDI models. By default, V uses MDI, and will
bring up the main MDI window, and open the first MDI child window. There currently is no way to have a
main MDI window with no active MDI child windows - when you exit the last window, the application
closes. The menu, command bar, and status bars will change to the ones defined by each child window as
each child window is activated.

V will automatically append a W ndow menu item to the main menu. The built in W ndow menu supports the
standard cascade and tile M DI operations, as well as showing alist of MDI children.

Y ou can also get MS-Windows applications to look like the standard SDI model. If you want an SDI app,
you control thisin the static declaration of the vApp object:

static testApp* tApp = new testApp("Vtest", 1);
The second parameter controls MDI or SDI. A default parameter is defined by Vas O to indicate the MDI
model. If you specify a1, then Vwill take an SDI look. It actually does this by using the MDI code, but
maximizing the canvas window, removing the extra buttons from the menu bar, and not adding the
W ndow menu. It isimpossible for the user to tell that thisis really an MDI application, but Vdoes not strictly
enforce this. If you create more than a single vemdwW ndow object, unpredictable things will happen under the
SDI simulation. It is up to you to not do that.

Since X doesn't have an MDI/SDI equivalent, it is harmless to specify SDI to an X version of your app.

Icons

As stated in the main part of this manual, V does not use resource files. Thisis true for the MS-Windows
versions. However, there is one reason you might want to include a. RCfile with aV MS-Windows
application, and that isto allow you to define the icons used with the application. (These are MS-Windows
icons, and are not the same thingsasvl! cons.)

Typica MS-Windows MDI applications use two icons - one for when the whole application isiconized, and
one when each child window isiconized. If you don't supply a. RCfile, you will get the default
MS-Windowsicons. The V distribution supplies two default icons of its own, called vapp. i co and

vwi ndow. i co. By including the definitions vAppl conl CONvapp. i co and vW ndow conl CONvwi ndow. i co in
the . RCfile, V will load and use those icons for the application and each child window respectively. Y ou can
substitute whatever two icons you want for your application by specifying different . i co filesfor the

vAppl con and vW ndowl con hamesin the. RCfile.

DEF File

M S-Windows applications are typically compiled using a. DEF file. Y ou can modify any of the . DEF files
included with VV sample programs.

TheV C++ GUI Framework

Installation Guide

Platform Notes 194

The V C++ GUI Reference Manual

Platform Notes 195

General Installation Notes

Beginning with V Version 1.21, the V distribution will consist of several parts.

* Full source.
The complete source of the V Library for MS-Windows and X Windows will be found on
vsrc-1. 21. tar. gz, agzipped tar file suitable for either MS-Windows or X platforms such as Linux.
The full source contains all the source and the make files and project files normally needed to get V
compiled on your machine. Use the standard Linux/Unix gunzi p andt ar programs to extract the
file. MS-Windows versions of these are available on ObjectCentral ftp site. WinZip also will extract
gzipped tar files.

» Documentation
Asof Version 1.21, the documentation is maintained only in html format. The full html source of the
documentation is called vdoc- 1. 21. tar . gz.

* Binary distributions
V has been designed to be easily installed on many platforms. This document describes some of the
details you will need to know to install V on your system. Thisinstallation guide covers the
distributions of V used by the most users. Some platforms are not explicitly covered, but there should
be enough general information here to get you started.

It has been my policy to distribute V only in source format, and not include precompiled versions of
the library or applications. There are two reasons for this. First, there are a bunch of C++ compilers
out there, and they usually don't work together. It would take just too much effort to try them all.
Second, | think getting V to compile with your compiler on your system is a good exercise. If you
can get that far, then you should be able to produce aV application with few problems.

However, that said, new to Version 1.21, the distribution will also contain ready to use compiled
versions of the library and V utility applications for the most used platforms and compilers. Initialy,
these will include Mingw32 egcs, Borland C++, and MS Visua C++ for MS-Windows, and an €lf
binary for Linux systems. The distributions will be split into three parts. executables for various

V utility programs, the V includefiles, and finally the V library files for each compiler. See the
ObjectCentral ftp site for latest binary versions. Instructions for installation of the binary versions are
included later in this page.

General Installation Philosophy

I think it is appropriate to discuss my general philosophy about the distribution of V, and how Version 1.21
represents amajor change. First, it isimportant to remember that the distribution of V is essentially a one
person effort. The X Athena and Motif versions, and the Windows WIN32 versions, as well asthe
docuementation, are currently completely being done by me, Bruce Wampler. The OS2 is the responsibility
of Jon Hacker, and the X gtk version has been done by Sven Verdoolaege (skimo). Thus, there arereally
three distributions of V.

Nevertheless, I'm till the main focal point of V, and am responsible for the main distribution, and approval
of the other releases. Thus, some of the decisions about the distribution have been made to minimize the time
I spend on distribution, and maximize the time | spend on adding features. Thus, | don't use an Install
program on M S-Windows, and haven't packaged V for Linux. I'd more than welcome any volunteersto do

General Installation Notes 196

The V C++ GUI Reference Manual

anything to make installation simpler.

Until the 1.21 release, V has been strictly a source code distribution. I've finally decided that is not the best
decision. So, beginning with this version, | will provide pre-compiled binaries for several major compilers
and platforms. If you successfully build aversion of V for onethat | haven't provided, please let me know,
and | will include your version on the distribution site.

Because of the history as a source only distribution, and because many V userswill still have to compileit,
this document will still be heavily oriented to telling you how to compile V on your system. If you are lucky
enough to use a compiler supported by a binary distribution, then you are in good shape.

I've also been hesitant to consider V amajor library on equal status with the standard C++ libraries. Again,
I'm changing that idea, and beginning with V 1.21, the general philosophy will beto install V libraries,
include files, and utility applications in the same directories used by X applications for X systems, and the
main location of includes and libraries for MS-Windows. For most users, thiswill greatly simplify things. For

some, it may mean an interaction with your system administrator to get V properly installed. 1'd appreciate
feedback on this new approach.

Directory Structure
This section describes the directory structure of the V source distribution. The V directory structure has been
designed to allow you to either install V in a personal directory, or at a higher system level.

Thefile hierarchy is:

v
Themain V directory.
Iv/appgen
V application generator program.
Ivibccide
MS-Windows build files for Borland C++.
Iv/becide/vdll
MS-Windows build files for Borland C++ version of V DLL.
Iibin
The/ bi n directory is used to hold the binaries of VV sample programs during build time. No

actual binaries are included on the distribution, but several subdirectories should be created
when 'V is unpacked.

General Installation Notes 197

The V C++ GUI Reference Manual

Ivibecide/vdll
MS-Windows build files for Borland C++ version of V DLL. See the Readme.txt file.
N/bmp2vbm

Source for asimple MS-Windows and OS/2 . brp bitmap format to . vbmV bit map format
converter.

NIConfigs

Various make configruation files for Linux/Unix and mingw32/cygwin versions.
Ividoc

The V documentation. The documentation included in the distributionisin HTML.
Ividraw

Source for the VDraw example program. Examples that are identical across platforms use a
. cpp file extension.

Ividrawex

Very smpleV draw example from C/C++ Users Journal article.
Nlexamp

Source for asimple V example.
Nlgnuwin32

Files that may be needed to compile and use V for the cygwin and gnuwin32 Windows
compilers.

Ivliconed
Source for V Icon editor.
Ivlicons
Source for alarge number V vbm bitmaps useful for tool bars.
Ivlincludew/v
Source for the MS-Windows *. hV header files.
Ivlincludex/v

Source for the X *. hV header files.

General Installation Notes 198

The V C++ GUI Reference Manual

NIlib

Compiled version of the V library will be placed under appropriate subdirectories here during
build.

IvImsve
Project and make files for Microsoft VC++.
Iv/obj
Compiled object code is saved under here.
/objm
Compiled object code for Motif version is saved under here.
IvIsrewin
The full C++ source for the Ms-Windows V library. Thefilesusea. cpp extension.
IvIsrex

The full C++ source for the X V library. Most filesuse a. cxx extension. Fileswith a
. cpp extension are identical to their counterpartsin the/ srcwi n directory.

Ivitest

Thetest program used to test V functionality.
Ivitexted

Source for asimple editor based on vTextEdit class.
Ivitutor

The source code for the tutorial example.
Ivivide

The source code for VIDE, the V Integrated Devel opment Environment.
Iivopengl

Source for examples for V vBaseGL CanvasPane class that interfaces to OpenGL.
Iviwatcom

Project and make files for Watcom C++ compiler.

General Installation Notes 199

The V C++ GUI Reference Manual

Microsoft Windows

Believeit or not, all the object code generated by the various compilers available for Windows is
incompatible across compilers! This meansit is not easy to distribute V aready compiled for every compiler
available. For one thing, | just can't afford to buy that many compilers.

Thisincompatibility means two important things. First, you must use alibrary for V compiled with your
compiler. I've tried to supply project or make files required for the major compilers, but not all are available.
The binary distribution aso has precompiled versions for several major Windows compilers.

Second, when you compile your apps for V, you must be very careful about the compilation model you
specify. For Windows 3.1, the best model isusually called Large. (WARNING! V has not been tested with
Windows 3.1 since about version 1.16.) While WIN32 doesn't have the memory model problem, it does have
calling convention and data alignment problems. Y ou MUST be careful to compile the V library AND your
own applications using the same memory maodel or calling conventions. These options are usually buried
somewhere on an options menu. | can't provide exact information about this. It is your job to understand your
compiler enough to do this.

I've selected acalling convention for the V project files | provide. Y ou should check what they are, and be
sure they match. | don't think they are always the default settings.

For example, the WIN32 version for the Borland compiler requires that wor d alignment be used. The
compiler default is byt e, so you will have to change this for your projects. The project examples supplied
have generally had their options set as required. Y ou should examine the settings, and use the same ones for
your applications. Y ou cannot mix compilers or even compiler code options.

It does seem, however, that you can build your applications with a data alignment bigger than V's. V is built
with wor d alignment, but apparently it is ok to build your appswith 4 byte or 8 byt e alignment and use it
with the default 2 byt eV library.

The standard distribution includes subdirectories for each compiler: Borland (/ bccei de), Microsoft (/ msvce),

Watcom (i / wat com), and mingw32 (/ gnuwi n32). For the IDE based versions, you should be able to use the
project filesto get started. For the mingw32 distribution, please see the section below on mingw32.

General Instructions for Precompiled library

The binary distributionisfound at f t p: // obj ect cent ral . cont bi n-di st . The binaries are for the following
compilers:

Mingw32 egcs. Thiswas compiled using the latest mingw32 egcs distribution.
Borland C++ 5.01 - This should work with BCC 5.01 and later.

Microsoft VC++ - Compiled with MSVC version 4.0, but | hopeit will work with 5.0 and 6.0, too. I'd like
feedback on this.

General Installation Notes 200

ftp://objectcentral.com/bin-dist

The V C++ GUI Reference Manual

How to do it

Theideaisto usethe standard / bi n, /i ncl ude, and /1 i b directories used by your compiler. The V utility
programs (vappgen, vide, etc.) are actually compiled with mingw32/egcs, and should execute with any
compiler. TheV includefiles, which belongon . . . /i ncl ude/ v are also common across al Windows
compilers. I've archived and compressed these with tar and gzip. Executables of these two utilities are
available on the ObjectCentral ftp site under dosut i | s if you need them.

Finally, there is a separate version of the compiled static V library for each of the above compilers.

Download v121-wi n-util.tgz andv1212-wi n-i nc. t gz for the common files. Download
v121-wi n-1i b-xxx. t gz with the appropriate xxx for your compiler.

Then, copy v121-wi n-util .t gz tothe proper / bi n directory. This can actualy be any directory in your
path, but | think the best convention isto put them on the bin directory of your compiler. Gunzip and untar
thefile:

cd /wherever/bin
gunzip -d v121-win-util.tgz
tar -xvf v121-win-util.tar

Copy v121-wi n-inc. t gz tothe/i ncl ude directory used by your compiler. This directory will contain
standard files such aswi ndows. h and st dl i b. h. Unpacking the V include files here will produce a

subdirectory (. . . /i ncl ude/ v) for the V includefiles.
cd /what ever/incl ude
gunzip -d v121-win-inc.tgz
tar -xvf v121-win-inc.tar

Finally, do the same for the compiled library files.

cd /whatever/lib
gunzip -d v121-w n-1lib-xxxx.tgz
tar -xvf v121-win-lib-xxxx.tar

At this point, V should behave like any other library and include file used by your compiler, and will be easy

to use. So far, the only special thing V requiresis at LEAST word alignment. We've had pretty reliable
reports that using 2-word or 4-word alignment will also work for your apps, even with word V libraries.

GNU g++ - mingw32/egcs

Now that there seemsto be areally good, stable version of GNU C++ for Windows, namely the mingw32
2.8.1 distribution, and the corresponding egcs version, V will be kept in sync with that distribution.

It seems that the Ming32 version may be moribund, given the latest progress with the egcs version of gec. V

will try to follow these distributions, and keep the makefiles and other things up to date. Asof V 1.21, the
egcs compiler will be the main one used for GNU WIN32 versions.

General Installation Notes 201

The V C++ GUI Reference Manual

How to compile your own Applications

After you have aworking version of V built (and probably installed on the mingw32/egcs directory path),
either by installing the precompiled version or building your own version, it isfairly easy to use and include

the V library. The main thing isto use the required - 1 switchesto g++ to load the proper libraries. Use:
g++ $(YOUROBIECTS) -1V -lconttl 32 - mii ndows

-or, for OpenGL apps-
g++ $(YOUROBJECTS) -1V -1Vgl -1conctl 32 -mm ndows

All the libraries needed for Windows are automatically included with the option - mwi ndows (you may also
need to add - | contt | 32).

If you want to add icon resources, see the example vgen.rc file in the /v/appgen directory. Y ou can replace
the .ico file with whatever icon you want. Y ou then need to add a dependency in your Makefile to compile
the .rc file with windres, and include the resulting output file on the link line. The Makefile for vgenin
Ivlappgen includes an example of how to do this.

Instructions for rebuilding V for mingw32

1. Unzip the V Windows distribution. Y ou must be sure to use an unzipper that preservesfile case, or
manually rename all the files to use lower case. While Windows doesn't care, gnu make does.

2. Make sure these directories exist:
v/ bi n/ gnuwi n32

v/ li b/ gnuwi n32

v/ obj / ghuwi n32
If you extract the archive correctly, they should be there.
3. You must now create the proper version of /v/Config.mk. Usually, thisis a matter of copying the
proper version of Config.Mk from the /v/Configs directory. For the mingw32 version, the file to copy
is/v/Configg/CfgMing.mk. Copy it to /v/Config.mk.

The default version assumes that you have unpacked the V distribution to c:/v, and that you have
installed mingw32 on C:/mingw32. Y ou can change this by editing the copied version of
IvIConfig.mk.

4. The Makefilein the /V root directory isintended for use on Unix/Linux machines. It does NOT work
for Windows. However, the Makefiles on the directories with the V library and other V applications
do work on Windows, and are used for both the X version on Linux/Unix, and for the MS-Windows
GNU WIN32 versions.

Currently (December 1998), al versions of GNU WIN32 may not include the all headers needed to
correctly compile V.

First, TRY to compile V, then if the headers are missing, copy them to your GNU WIN32 compiler's
include directory.

You MAY need to copy C:/v/gnuwin32/include/commctrl.h to C:/mingw32/include/commctrl.h (or

whereever the mingw32 /include directory is on your system.) Y ou need thisfile to compileV 1.18
and later for the Common Control dil. Y ou will also add -lcomctl32 to your link linesin your

General Installation Notes 202

The V C++ GUI Reference Manual

makefile. (For some reason, the mingw32 distribution includes comctl32.a, but fails to include the
corresponding header file -- that itemis till being resolved. For now, V will provide the header.)

Also, if you choose to compile for OpenGL, you may need to copy the entire gl subdirectory (found
at v/gnuwin32/include) to the GNU WIN32 include directory (as a/include/gl subdirectory).

5. cd to each of these directories and run “make' for each of the following. (The top level Makefilein
C:/v has X specific stuff and doesn't work. Also, since make is case sensitive, you might have to use
“make -f makefile'.)

srcwin (required)

appgen (useful - see documentation)

iconed (useful - especially for icons)

icons (shows predefined V icons you can use)
draw (example only)

drawex (example only)

examp (example only)

texted (example only)

tutor (example only)

vide (very useful IDE for mingw32!)

6. Putting the V headersin the mingw32 directory path has the advantage of eliminating the need for
extrainclude directivesin your makefiles. (An older version of V found at the mingw32 site should
be replaced with this latest version.)

After you build V, you will find it easiest to copy libV.afrom v/lib/gnuwin32 to mingw32/lib/libV .a,
aswell asal the V headers in from v/includew/v to mingw32/include/v. Thiswill allow you to easily

update versions of V, and to compile your own applications with V.

To do this, after you've built the V library, change to the home /v directory, and enter:

make install gnuw n32
Thiswill copy al the required header, library, and binary files to the mingw32 directories as
defined in Config.mk.
7. If you want to build OpenGL applications with mingw32, the header files are located at
gnuwin32/include.

Cygnus cygwin

General Installation Notes 203

The V C++ GUI Reference Manual

Instructions for rebuilding V for Cygwin B20

One of the main features of the Cygwin support for the V library isthe fact that it may be built for both X and
Windows GUI targets.

NOTE: To usethe X version you will have to download precompiled library and header files of X11R6.4
from Cygwin32 Porting Project's homepage at http://www-public.rz.uni-duessel dorf.de/~tolj, which isalso
the official supporter and a X windows server for your Win32 machine, i.e. X-Win32 from
http://www.starnet.com.

TO REBUILD THE V LIBRARY (X and WINDOWS) FOR CYGWIN32

1. To extract the compressed v-1.21.tar.gz archive you will have to do the following within your bash

shell:
gunzip v-1.21.tar.gz

tar xf v-1.21.tar
Now you will have the V distribution within the subdirectory v/.

2. Make sure these directories exist, or do mkdir for all of these:
v/ bi n/ gnuwi n32x

v/ bi n/ ghuwi n32
v/ i b/ gnuwi n32x
v/ li b/ gnuwi n32
v/ obj / gnuwi n32x
v/ obj / gnuwi n32
If you unpack correctly, they should be there.

3. Making the X version: Edit the /v/Config.mk file as follows:
- set HOMEYV to the home directory of your V distribution
- set ARCH = cygwin32
- set X11RV = X11R6.4 (if using our recommended X 11 libraries)

- remove line 50 from /v/srx/Makefile for the vbglcnv.o object, since our X 11 libraries don't
support GL.

- Now you may type "make" and build the library and some example applications.
4. Making the Windows GUI version: Copy /v/gnuwin32/ConfigW.mk to /v/Config.mk and edit the
target file asfollows: - set HOMEV to the home directory of your V distribution

5. cd to each of these directories and run "make" for each of the following. (Don't use the top level
Makefilein /v since thisis used to build the X version).

srcwin (required)

General Installation Notes 204

The V C++ GUI Reference Manual

appgen (useful - see documentation)

iconed (useful - especially for icons)

icons (shows predefined V icons you can use)
draw (example only)

drawex (example only)

examp (example only)

texted (example only)

tutor (example only)

vide (very useful IDE for cygwin32!)
6. If you want to build OpenGL applications with cygwin32, the header files are located at
gnuwin32/include.

TO COMPILE YOUR OWN APPLICATIONS

Now that you have aworking version of V built (and probably installed on the mingw32 directory path), it is
fairly easy to use and include the V library. The main thing is to include the required - switchesto g++ to

load the proper libraries. Use:
g++ $(YOUROBJECTS) -1V -lconttl 32 -mi ndows

All the libraries needed for Windows are automatically included with the option -mwindows (you may need
to add -lcomctl 32).

If you want to add icon resources, see the example vgen.rc file in the /v/appgen directory. Y ou can replace
the .ico file with whatever icon you want. Y ou then need to add a dependency in your Makefile to compile
the .rc file with windres, and include the resulting output file on the link line. The Makefile for vgen in
Ivlappgen includes an example of how to do this.

Borland

Windows specific files for Borland 5.0 are kept on BCCIDE. That directory includes .IDE files for Borland
C++, .RC, .DEF, and .ICO files. The project files assume that BCC ison drive C.. If you have BCC 4.5, or
keep BCC on adrive other than C:, then you will have modify the project files to change the include file
search paths. Note that the BCC 5.0 project files only work for WIN32. | couldn't get BCC 5.02 to compile
the 16 bit version. Thereis a project file for BCC 4.5 that builds a 16 bit version.

The subdirectory / v/ becei de/ vdl | contains Borland makefiles for building a DLL version with Borland
C++. ItisVERY easy. See the Readme.txt file. You use the provided makefiles using a DOS window.
Simply change to this directory, and run Borland's make on the Makfile in this directory. When you are done,
you will have V121BCC.DLL (the DLL), and V121BCC.LIB (the load library).

General Installation Notes 205

The V C++ GUI Reference Manual

Now you can build V applications using Borland C++, and link to the V121BCC.LIB, and include the
V121BCC.DLL inthe same directory as your executable.

Microsoft Visual C++

This distribution now includes make/project files for Microsoft VC++. There are 16 bit versionsfor MSVC
1.52, and for MSVC 4.0, which were built using the cheap Standard Edition. They should be compatible with
the expensive later version.

Watcom

Watcom project files are found in the WATCOM directory. There are various subdirectories with different
WIN32 and Win3.1 project files. Thereis a subdirectory called WATCOM11 that has some contributed
makefiles that are known to work with Watcom 11.

Other Compilers

If you want to compile V with a different compiler, it isn't too hard. To build the library, you include ALL
thefilesinthev/ srcwi n directory. Specify v/ i ncl udewin the include search path. V has been designed to
work only with the LARGE model for Win3.1. It works with whatever calling convention you need for
WIN32.

The djcpp version seemsto have difficulty compiling V.

X Windows

Building V for various X Windows flavors of Unix system uses the standard gnu version of the Unix

make tool. (Note: you must use amake compatible with the gnu version of make. The V makefiles use features
and conventions supported by the gnu version. Some native makes do not support all the features, and will
generate error messages.) The main / v directory contains aMakef i | e and afile called Confi g. mk. The
directory / v/ Confi gs contains several versions of Conf i g. nk that usually must be customized to build V for
your system. The Makef i | e and the Confi g. mk files contain more information about building V.

Linux

General Installation Notes 206

The V C++ GUI Reference Manual

Instructions for building V for Linux

1. Gunzip and tar the V distribution to a directory of your choice. Thefileswill extract to a
/ v subdirectory.

2. You must now create the proper version of /v/Config.mk. Usually, thisis a matter of copying the
proper version of Config.mk from the /v/Configs directory. Thiswill be ConfigX.mk for the X
version, or ConfigM.mk for the Matif version.

The default version assumes that you have unpacked the V distribution to $(HOVE) / v, where HOME is
the standard environment variable. Y ou can change this by editing the copied version of
IvIConfig.mk.

3. From themain / v directory, run "make'. This should build the static version V library and al the
V utility applications. (Y ou can build a shared library version -- see the comments in the Makefile.)
The following utilities are built:

appgen (useful - see documentation)

iconed (useful - especially for icons)

icons (shows predefined V icons you can use)
draw (example only)

drawex (example only)

examp (example only)

texted (example only)

tutor (example only)

vide (very useful IDE)

4. By default, the V makefile will try to compile the OpenGL library. If you don't have OpenGL or
Mesainstalled on your system, the makefile will generate a bunch of errors about missing OpenGL
include files, and you can safely ignore them.

5. After you build V, you will find it easiest to install the library and include files to standard places. To

do this, first su or logon asr oot . Then enter make i nst al | Li nux. Thiswill install V to the standard
X11 directories.

How to compile your own Applications

After you have aworking version of V built (and probably installed), either by installing the precompiled
version or building your own version, it isfairly easy to use and include the V library. The V application
generator, vgen, will build a makefile with the proper includes and library switches. Y ou can also use the
provided sample makefiles as starting points.

General Installation Notes 207

The V C++ GUI Reference Manual

Y ou can aso build your own makefiles. The main thing isto usetherequired-1, -L, and -1 switchesto

g++ to load the proper libraries and include files. To compile, use:
g++ $(YOURSRC) -1/usr/X11R6/i ncl ude

To link, use:
g++ $(YOUROBJECTS) -L/usr/X11R6/lib -1V -1 Xmu -1 Xt -1 Xext -IX11

For OpenGL applications, add - | Vgl to the library switches.

Other Unix Flavors

A series of Makef i | es isincluded with the V distribution to build the library on various Unix systems. In the
main /v directory isafile called Confi g. mk which usually needsto be customized before building. The
prototype Conf i g. mk files are contained in the subdirectory / v/ Conf i gs. There are two versions of

Confi g. mk supplied: Confi gX. mk for the Athena widget based version, and Conf i gM nk for the Motif widget
based version. Befare you compile, you should copy the appropriate fileto / v/ Confi g. nk, edit it to
customize it for your system, then type make fromthe/ v directory. Thiswill build the V library and all the
utility programs.

The confi g. nk file, and the various Makef i | es contain lots of comments about building V on your platform.
Please read those files directly for more critical information about getting V working on your system.

gtk

The gtk version of V isstill aseparate distribution. Please see the instructions included with it. 1t will
eventually become the mainline V Linux distribution.

Motif

The Motif version of V seemsto be fairly stable, although there are some problems. I've only had accessto
LessTif for development, and apparently there are a few incompatibilites with Motif.

There has been adecided lack of interest in this port, and | haven't devoted as much timeto it as the other
versions. If you really want to use Motif, | will do my best to work out any remaining bugs in this version
with your input!

0S/2

Directions for compiling on OS/2 are included in the OS2 distribution. Since the OS/2 version was just
released, there are not as many prebuilt project or makefiles available. The mingw32 files should serve asa
good basis for the EMX compiler. As users contribute feedback, this situation should change.

General Installation Notes 208

The V C++ GUI Reference Manual

OpenGL

V will only work with OpenGL if you have it installed on your system. Beginning with V 1.21, OpenGL
support has been split into a separate library file. This may cause some compilation errors from V makefiles
if you don't have OpenGL, but you can ingore them.

OpenGL on Microsoft Windows

Windows comes standard with the OpenGL DLL. Y ou must have the appropriate import library to use the
DLL, which usually comes with the various compilers. The only problem seems to be with the gnu
mingw32/cygwin compiler. The required include files are available under the / v/ gnuwi n32 directory if you
need them.

OpenGL on X Windows

V seemsto work flawlessly with Mesa on Linux, and with standard OpenGL on most other systems. If you
don't have OpenGL or Mesa, you won't need libvgl.a

This user guide, installation, and reference manual, The V C++ GUI Framework User Guide and Reference Manual, Version 1.21,
may be reproduced and distributed, in whole or in part, subject to the following conditions:

1. The copyright notice above and this permission notice must be preserved complete on al complete or partial copies.

2. You may not trang ate or create a derivative of this work without the author's written permission.

3. If you distribute this manual in part, you must provide instructions and a means for obtaining a complete version.

4.Y ou may make a profit on copies of thiswork only if it isincluded as part of an electronic distribution of other free
software works (e.g., Linux or GNU).

5. Small portions may be reproduced as illustrations for reviews or quotations in other works without this permission notice
if proper citation is given.

My goal isto get as many people as can be helped using V. If the terms of this documentation copyright are
unsatisfactory, please contact me and we can probably work something out.

V User Guide and Reference Manual - Version 1.21 - 10/31/98
Copyright © 1998, Bruce E. Wampler
All rights reserved.

Bruce E. Wampler

521 Springridge Dr.
Glenwood Springs, CO 81601

General Installation Notes 209

The V C++ GUI Reference Manual

bruce@objectcentral.com
www.objectcentral.com

General Installation Notes 210

mailto:bruce@objectcentral.com
http://www.objectcentral.com

The Latest Version: What's New?

This page will cover the latest version of V. The current releaseis Version 1.21. See Installing V for
installation instructions.

New Features -V Version 1.21

New User Guide

TheV User Guide has been completely reformatted for HTML. The LaTeX version and its ugly converted
HTML version have been abandoned. The new version uses style sheets, and haslots of hyperlinks to make it
atruly great online manual.

Still HTML has limitations. One feature | want to add is the ability to put the reference for al classeson a
single page so that it can easily be printed by the browser. Unfortunately, HTML does not have a universially
supported mechanism similar to #include. So it goes.

vSList Class

ThevsLi st class has been added to help make using listsfor C_Li st objects easier. See vSLidt.

New MVC Support

AV user, Tyge Lavset, suggested some new methods for vApp and vw ndow that make implementing MV C
with V very easy. See vApp MV C.

OpenGL Library Separated

Because many Linux systems are configured without OpenGL or Mesa, the V OpenGL canvas has been
moved to itsown library. Thisistrue for the MS-Windows version, too.

MS-Windows: MDI Empty Frame Support

A new method has been added to vApp to allow V appsto work like standard M DI apps when al command
windows have been closed. SeevApp: : O oselast CrdW ndow.

MS-Windows: Transparent Icons

Support for transparent icons in MS-Windows has been added. See vicon.
MS-Windows: Cygwin and mingw32 support improved

Support for the GNU Cygnus and mingw32 compilers has been improved.
MS-Windows: DLL for Borland C++

Y ou can now build aV DLL with at least Borland C++. | haven't gotten MSV C++ or the gnu win32

The Latest Version: What's New? 211

install.htm
install.htm
vslist.htm
vicon.htm

The V C++ GUI Reference Manual

compilers to do this yet. Contributions welcome!
MS-Windows: Windows 3.1 no longer officially supported

I don't know how many users thiswill affect, but it has become impossible for me to support Windows 3.1
any longer. | haven't tested V with Windows 3.1 since about V 1.16, so | don't even know if 1.21 does or
does not work with Windows 3.1. If you need 3.1 support, your are welcometo try it. If you send a diff file, |
will be happy to provide that to others, and incorporate the changes for the next release. However, | will be
unable to continue to confirm 3.1 compliance.

VIDE Improved

The VIDE and the V AppGen utilites have been improved.

New Features - V Version 1.20

New Features for C_List

The number of rows displayed can now be controlled by using the Conmandj ect element si ze. By
specifying the attribute CA_Si ze and providing avalue for the si ze element, you can specify how many rows
to show. If you don't specify asize, 8 rowswill be displayed. Vwill support between 1 and 32 rows. Note the
that the si ze element isthelast one of a Commandbj ect , and can left out of a declaration, which resultsin
the compiler generating a zero value, giving the default 8 rows.

The width in pixels (approximately) of the list can be controlled by specifying the CA_Li st W dt h attribute
and providing avalueto ther et Val parameter, which is otherwise unused for alist object. This
implementation isn't perfect - you may have to play with the interaction between the width you specify, and
the font used in alist control.

Tool Tips

Support for Tool Tipswas added in V Version 1.18. Y ou can easily add Tool Tips by adding the appropriate
text to your existing Conmandbj ect definitions of tool bars and dialogs. The new definition of a
ConmandQbj ect follows:

t ypedef struct CommandCbj ect

{
CmdType cndType; /1 what kind of itemis this
Itemval cndl d; /1 unique id for the item
Itemval retVal; /1 initial value of object
char* title; /'l string
voi d* itenlist; /] used when cnd needs a |i st
CndAttribute attrs; // list of attributes
int Sensitive; /] if itemis sensitive or not
I tenVal cFrane; /! Frame used for an item
ItenVal cRightO; /1 ltemplaced left of this id
I teniVal cBel ow, /'l Item placed bel ow this one
int size; /] Used for size information

The Latest Version: What's New? 212

The V C++ GUI Reference Manual

char* tip; /1 Tool Tip string
} CommandObj ect ;

char* tip

Thetip parameter is used to specify an optional Tool Tip string for use with a command object. If you provide
astring here, that string will be automatically displayed after the user holds the mouse over that control. The
exact delay before thetip is shown, and the format of the tip box is somewhat platform dependent, and all
platforms might not support tool tips. (Currently, only OS/2 does not support tips.) Note that if you use atip,
you must be sure to include a value (usually 0) for the size parameter!

void vBeep()

This utility routine will sound an audible beep.

void vGetcmdldIindex(ltemVal cmdld, CommandObject *cmdObj)

Sometimes when you work with a CommandObject array to define a dialog, you need to access the elements

of aparticular item in the array. Thisis especialy true for manipulating lists. This routine will return the
index into a CommandObject array of an entry with the supplied 1 t enval cndl d.

Release Notes - V Versions

Version 1.00

Thisversion was local to the University of New Mexico on January 10, 1996. Versions 1.01,
1.02, and 1.03 were local maintenance rel eases.

Version 1.04

Thiswasthe first major public release of V, and was announced to the world on February 14,
1996.

Version 1.05

Thisversion had several bug fixes obtained from feedback of the public release.
Version 1.06

Thiswas an X only release, and added 3D controls.
Version 1.07

This release was never formally announced, and included some of the changes listed for

The Latest Version: What's New? 213

The V C++ GUI Reference Manual

version 1.07.
Version 1.08

The 4/15/96 release added severa significant featuresto V:

The vMenor yDC drawing canvas, including new methods Copy Fr omvenor yDC and

Dr awCol or Poi nt s.

Internal revisions for handling of color, including adding vCol or : : Reset Col or to allow
reuse of color maps, and vCol or: : Bi t sO Col or to get color capability. These revisions
allow Vapps to make more effective use of default color maps.

vPen: : Set Col or (r, g, b) and vBrush: : Set Col or (r, g, b) are being dropped in favor of the
vCol or forms. These calls break the hidden management of color maps, and while still
included in the code, should not be used. Support for the (r, g, b) form will be dropped
entirely in future versions of V.

C Toggl el conBut t on was added to allow a pressed in button interface look in place of
check boxes and radio buttons.

Documentation for ChangeCol or and C_Col or Label was added, although the functionality
has been there for awhile.

The WIN32 port was finished, and the X and M S-Windows versions are now in sync.

Version 1.09

Added C Toggl eBut t on and C_Toggl eFr ame controls. It also includes alarge number of
Vicons suitable for building command pane tool bars.

Version 1.10

The 5/29/96 release of V includes the following enhancements and changes.

The V Icon Editor - an icon editor to create icons for various V controls.

Inclusion of accelerator key support in menus.

Addition of the ChangelLi st Pt r set type to allow completely dynamic lists, combo boxes,
and spinners.

Addition of Dr awLi nes, Dr awPoi nt s, and Dr awRect angl es to vCanvas.

Several bug fixes for both MS-Windows and X, some relatively major.

The canvas page scroll messages were changed on the X version to correspond to the
behavior of the MS-Windows version. A page scroll message is sent only at the completion
of ascrall, not continuously as before. It is usually rather difficult to implement nice
continuous scrolling, so this approach seems more useful to more people. Thisisthe only
known change that might affect compatibility with previous Vapplications.

Addition of adirectory for outside contributions.

Version 1.11

The 7/4/96 release of V has several minor bug fixes for the MS-Windows and X versions. It
also adds the wor kSl i ce methods to support applications that require computations to
continue even if the user is not entering commands to the application.

Version 1.12

Thiswas abug fix release for MS-Windows. The X version was unchanged, but renumbered
for consistency.

The Latest Version: What's New? 214

The V C++ GUI Reference Manual

Version 1.13

This 8/24/1996 release of V isamajor release with several new features, and some
significant bug fixes that can change the behavior of existing Vapplications. The following
includes alist of changes:

The V Application Generator, vgen is now included with the standard distribution. It will
generate asimple V application as a starting skeleton for new apps.

The values being passed by V to vCanvasPane: : VPage and HPage were incorrect on the X
version. The documentation states that the values for Top should be in the range 0 to 100.
The MS-Windows version worked correctly, but the X version was passing arange of 0to
(2100-Shown). This bug actually has been in the X version since the switch to 3D Controls.
With version 1.13, both MS-Windows and X work the same.

The MS-Windows version of vDC: : Dr awText was fixed to work according to the
documentation. It had been drawing text with the X,y as the upper left corner of the text.
Beginning with 1.13, it now draws at the lower left corner as specified in the documentation.
Two functions, Get HScrol | and Get VScr ol |, were added to vCanvasPane to make dealing
with scroll bars easier.

A new standard using enuns for generating |Ds for controls has been adopted beginning with
1.13.

C _Text I n controls now allow you to specify the width of the control in characters using the
si ze field. Thisis described in Chapter 6.

InvcCanvasPane, new parameters (with default values for backward compatibility) were
added to CopyFr omMvenor yDC to allow subregions to be copied.

Using avTranspar ent pen when drawing text now results in leaving the existing
background when drawing, and avSol i d pen overwrites with the current background color.
There was a conflict on MS-Windows with using vK_ for key names. The MS-Windows
version was changed long ago, and now the X version also uses lower case letters (e.g.,
vk_Tab).

Version 1.14

The major addition to 10/6/96 VRelease 1.14 is the addition of the vText Edi t or class, which
isavery good first pass at a complete editing canvas. The editor is complete, can be extended
to support custom command sets or file management. It is missing cut, copy, and paste,
which will be implemented as general support for these is added to V. The code for

vText Edi t or isbased on vText CanvasPane, and isidentical for the X and MS-Windows
versions.

Also, for the X Version, support for OpenGL has been added. This support isfound in the
distribution directory v/ vxgl . While the VOpenGL canvas pane seems very robust, it is till
somewhat experimental. | would like any feedback on its use and design.

Other changes, mostly bug fixes, include:

X version: The little close button on the left of the menu bar has been dropped by popular
reguest. It seems most people didn't likeiit. If you do, you can till get it by defining the
symbol USE_ CLOSE _BUTTON. Instead, Vnow supportsthe X WM_DELETE_WINDOW
protocol. This protocol is supported dightly differently by different window managers, but
accomplishes the same thing as the old close button.

X version: There was aminor bug in how the scroll bars worked whentop == 0.

X version: The method used to get the size of awindow was changed, and should now give
correct values.

X version: There was a bug in drawing radio buttons that only showed up on some systems.
X version: There was a bug in changing the current selection in combo boxes.

The Latest Version: What's New? 215

The V C++ GUI Reference Manual

X version: There was a bug in setting colors for the PostScript DC.

X and MS-Windows: There were several bugsin vText CanvasPane exposed by the
implementation of vText Edi t or .

X version: There was a bug in the key mapping that would cause a program to terminate if an
unrecognized key was pressed.

MS-Windows. The method to determine the size of the MDI frame and client windows was
improved (I hope!).

MS-Windows: A bug with the work timer was fixed. The interaction between the work timer,
check events, and the M S-Windows message |oop was changed to work better.
MS-Windows: The argument order of ClearRect was fixed to correspond to X and the
documentation.

MS-Windows: There was a bug that didn't allow SetValue to work correctly for some
controls.

MS-Windows: A bug in handling the MS-Windows caret in text canvases was fixed. This
one was a bit subtle, but nasty in possible side effects. Also, EnterFocus and LeaveFocus did
not work correctly.

MS-Windows: A bug in setting text colors on NT and Windows 3.1 was fixed. The bug did
not manifest itself on Windows 95.

Version 1.15

Release of V Version 1.15 has some non-backward compatible changes. In previous versions
of V, there were inconsistencies in the order of width and height parameters. These have all
been now changed to consistently use awidth/height order. (Except for vicon, which still use
height/width.) The decision to fix this order came from a general consensus of the V mail

list.

Y ou will need to change your code to reflect the new changes. The following things must be
changed:

1. Any callsto the constructor of abase or derived vCmdWindow will need the width and
height order swapped.

2. Calls or overrides of vApp::NewAppWin need the order of width and height swapped.

3. Callsto vCanvasPane:: SetHeightWidth(h,w) need to be changed to

vCanvasPane:: SetWidthHeight(w,h).

4. Calls or overrides of all versions of Redraw(x,y,h,w) need to be changed to
Redraw(x,y,w,h).

5. Calls or overrides of all versions of Resize(h,w) need to be changed to Resize(w,h). (The
vTextCanvas row/column versions retain their row/column order.)

Also, the makefiles have been revised for more flexible building on different *nix platforms.
A new method, vDialog::DialogDisplayed has been added to allow dynamic setting of dialog
control values.

Version 1.16

Version 1.16 has no significant changesin V functionality. It mostly has some bug fixes. The
only major change is the release of a completely new set of Makefiles for the Unix version.
These new makefiles were contributed by aV user, and are much cleaner than the old
versions.

A summary of the changes:

A small change to the code generated by vAppGen.

A fix to scrolling in the V Icon Editor.

Some changesto the v_defs.h file for MS-Windows, including compatibility changes needed

The Latest Version: What's New? 216

The V C++ GUI Reference Manual

for Microsoft VC++. Project files were added for MSV C++.

The == and != operators for brushes, fonts, pens, and colors were changed to use reference
parameters consistently.

Various minor changes to enhance compiler compatibility, both on MS-Windows and X.
VReply was fixed to work over multiple shows.

A void* was added to vAppWinfo.

Vmemdc had height and width switched.

Sizing of buttons on MS-Windows was fixed for Windows 95.

A resource leak was fixed for MS-Windows.

A magjor bug that showed up only under Microsoft VC++ was fixed.

Initialization of text in strings was fixed for MS-Windows.

Changing the values of radio buttons on M S-Windows now works.

Spinners now honor the size specification.

A tab keystroke now works correctly on MS-Windows.

A bugin

Various new tests were added to the test program.

A couple of bugs were fixed in the X OpenGL V interface.

Version 1.17

Version 1.16 has proven to be remarkably stable. A few minor bugs have been reported and
corrected for Version 1.17. Some enhancements have been added, the most significant allows
you to specify the number of rows displayed in alist box.

A summary of the changes:

Lists by default display 8 rows, buy you can now specify and size between 1 and 32 rows.

A bug in Windows when closing multiple windows was fixed.

The vReply dialog has been changed to allow a default string in the input field.

Direct printing to | pr has been added to the X version.

The PostScript driver was modified to print better lines.

Version 1.18

Release 1.18 has amajor enhancementsto V. The main addition is support for Tool Tips -
little boxes with text info that are automatically displayed when the user holds the mouse
over acontrol. Tool Tip support is very trivial to add to your programs, and greatly enhances
the user interface.

There are some minor enhancements, and afew bug fixes. Beginning with the 1.18 release,
there will be a separate document that summarizes the changes for that version. This will
simplify the upgrade path for past users.

Version 1.19
Release 1.19 has some minor enhancements, and a few bug fixes. The main enhancement is
the addition of password support for text in controls. There have also been some

improvements to vgen, especialy for support for the m ngw32 MS-Windows compiler. The
support for the m ngwad2 compiler has been improved.

Version 1.20

Release 1.20 is has some major new features.
Support for OpenGL. OpenGL is now supported on both X and MS-Windows. While the

The Latest Version: What's New? 217

The V C++ GUI Reference Manual

interface to the vBaseG.CanvasPane class has not changed, the X version was revised to be
properly derived from vCanvasPane, and is now included as a standard classin the library.
The clipboard isfinally supported - at |east for text.

Thetext editor class has been improved. The included text editor based on the class now
supports C++ syntax highlighting.

Thefirst version of the V Integrated Devel opment Environment for the GNU g++ compiler
has been included. It currently works with makefiles you generate. It will be improved to
include full project management, a class browser, adialog builder, and other neat features.
Vgen, the Vshell application generator, has been improved, and also includes support for
generating OpenGL app shells.

There has been a serious bug ever since version 1.00 when closing multiple windows. The
voi d vApp: : O oseAppW n class did not properly allow the user to cancel the close sequence
by the app. This class has been changed toi nt vApp: : d oseAppW n, and if your override
returns 0O, the exit process will now be properly aborted. Unfortunately, this means you must
change al of you appsto conform to the new i nt type.

ThevApp: : xxAl | methods were broken on the X version.

A problem with tool tips on MS-Windows with multiple opens and closes on dialogs has
been fixed.

The startup code has been separated to allow easier building of DLLSs.

On MS-Windows, the Esc key is now the same as clicking the Cancel button. This has not
been implemented on X yet. This change potentially causes a problem with MS-Windows
apps. MS-Windows handles the Esc key by reserving the value 2. Unfortunately, thereis no
way to tell if the 2 isfrom the Esc key or from a menu or dialog command item you've
defined with the value 2. So, you must change the value of any button or command object
you have with the id value of 2 to something else. Sorry.

Future Plans

» The VIDE will be enhanced. It will be released as a separate package, apart from the standard
Vlibrary.

The Latest Version: What's New? 218

	Table of Contents
	The V Reference Manual
	The V View of the World
	Getting Started
	Introduction to Drawing
	vApp
	vAppWinInfo
	vBaseGLCanvasPane
	vBrush
	vCanvasPane
	vCanvasPaneDC
	vCommandPane
	vCmdWindow
	vColor
	vDC
	vDebugDialog
	vDialog
	vFileSelect
	vFont
	vFontSelect
	vIcon
	vMemoryDC
	vMenu
	vModalDialog
	vNoticeDialog
	vOS
	vPane
	vPen
	vPrintDC
	vPrinter
	vReplyDialog
	vSList
	vStatus
	vTextCanvasPane
	vTextEditor
	vTimer
	vWindow
	V Utility Methods
	vYNReplyDialog
	CmdAttribute
	CommandObject
	CommandObject Commands
	Standard V Values
	Symbolic Key Codes
	Miscellaneous Utilites
	V Application Generator
	V Icon Editor
	V IDE
	The V C++ Coding Style Guidelines
	V Class Hierarchy
	Platform Notes
	General Installation Notes
	The Latest Version: What's New?

