XPAD : hybrid pixel detectors for material sciences studies using X-ray synchrotron radiation.

J.-F. Bérar, S. Arnaud, S. Basolo, N. Boudet, P. Breugnon, B. Caillot, J.-C. Clemens, P. Delpierre, B. Dinkespiler, S. Hustache, I. Koudobine, M. Menouni, P. Pangaud, R. Potheau, E. Vigeolas
D2AM/CRG-ESRF Inst. NEEL CPPM-IN2P3 Sync. SOLEIL St Aubin

Jan. 18th, 2007, Trieste

Summary.

 XPAD project and prototypes 	4
 Resolution, dynamical range, 	7
 XPAD2 calibration and dispersion 	9
 XPAD2 examples 	11
 XPAD3 design 	16
 XPAD3 preliminary results 	18

Detectors & material sciences scattering

Intensity range in scattering experiments

$1 ightarrow 10^4$	13b	mean structure	chemistry (biocrystallography)
$1 ightarrow 10^6$	20b	ordering	correlation, incomensurate
$1 ightarrow 10^9$	30b	SAXS	μm objects interaction, polymers

- Synchrotron \rightarrow current flux on sample : $10^{11} 10^{14} \nu/s$
- Spot size at sample or detector position : $1 \times 5 \rightarrow 0.05 \times 0.10 \, mm^2$
- Counting rate : $10^9 \nu/s$ within $10^{-2} mm^2$
- Resolution : angular $10^{-3} \circ \rightarrow 100 \, \mu m$ at $0.5 \, m \approx 0.01 \, ^{o}$

The XPAD project (XPAD1).

dynamic range saturation rate pixel size exposure time

 $> 10^9 count/pixel$ energy range $5 \rightarrow 25 \, keV$ $330 imes 330 \mu m^2$ 1ms
ightarrow 1000 s

 \Rightarrow 32 bits architecture $> 10^7 \nu/s/pixel \Rightarrow noise < 0.1 \nu/s/pixel$ from beamline energy range mean spot size (1995) : $250 \times 400 \, \mu m^2$ kinetics potentiality

Diodes

- high resistivity Si
- $300 \mu m$ thick

Chips :

- AMS CMOS $0.8 \, \mu m$
- 24×25 pixel/chip

Boudet et all., NIM A510 (2003) 41-44,

Berar et all., J. Appl. Cryst. 35 (2002) 471-476

XPAD detectors.

XPAD1	XPAD2	XPAD3S/C
2001	2003	2006
330 × 330 μm		$130 \times 130 \mu m$
AMS 0.8 μm CMOS		IBM 0.25µm
24 x 25 pixels		80 x 120 pixels
16 bits		12 bits
16 bits		16 bits
15 to 25 keV		7 to 25 keV
Si 300 μm	Si 5	$500 \ \mu m$
$1.10^{6} ph/s$	$2.10^{6} ph/s$	$ 2.10^5 ph/s$
500 ns	208 ns	to be measured
5×2 chips	8 x 1 chips	7 x 1 chips
1 module up to 8 modules		8 modules or more
limited	back	plugged
parallel wires	ethernet 100MB	ethernet 1GB?
		preliminary tests card
	XPAD1 2001 330 AMS 0. 24 x 15 15 t Si 300 μm 1.10 ⁶ ph/s 500 ns 5 × 2 chips 1 module limited parallel wires	XPAD1 2001XPAD2 2003 $330 \times 330 \ \mu m$ AMS 0.8 $\ \mu m$ CMOS 24×25 pixels 16 bits 16 bits 15 to 25 keVSi 300 $\ \mu m$ 1.10 ⁶ ph/s 500 ns 5 \times 2 chips 1 module limited parallel wiresSi 9 2.10 ⁶ ph/s 208 ns 8 \times 1 chips up to 8 modules back ethernet 100MBTotal control of the second s

XPAD2 detector : 8 modules \times 8chips

New diodes of 500 μm Si thick \rightarrow efficiency 78 % @15keV, 21% @25keV

Diode \rightleftharpoons 8 chips of 24 × 25 pixels PCB card : drivers and regulators. Modules \rightleftharpoons acquisition card Alterra Nios kit + ethernet

Tiled as close as possible \rightarrow reduce shading, dead zones. Metallic holder \rightarrow few μm . Size : 200 × 192 pixels Surface $\approx 68 \times 68mm^2$.

Interface software

developed using LabWindows/CVI application software moves to Linux. XPAD prototype at SAXS station.

Spatial resolution

As the diode is common to pixels belonging to the same chip, some charge sharing may occurs between adjacent pixels.

Measurements show that the charge sharing occurs on $\approx~60\,\mu m.$

• need to be checked with XPAD3 smaller pixels

Dynamical range

Counts in adjacent pixels as a function of the incoming flux.

Energy resolution

The conversion of incoming photons in silicon leads to a charge proportional to the incoming energy. The XPAD2 chip energy resolution is near $1 \, keV$.

Measured counts as a function of the threshold for the diffusion of a Br solution on both sides of Br absoption edge.

Pixel threshold register : 4 bits (XPAD1) \rightarrow 6 bits (XPAD2)

XPAD2 calibration and dispersion

- beam E_x : monochromatic flat scattering (amorphous), noisy, time expensive
- *injection* E_{inj} : simulate the beam, quick and easy but need calibration
- Each pixel is described by : $C, \alpha, \beta, E_{inj}(noise)$ $E_x = CE_{inj} = \alpha(I_{th}) + \beta(I_{dac})$ $E_x(noise) = CE_{inj}(noise)$
- $\approx 4 \, 10^4$ pixels \Rightarrow automatic configuration/calibration procedure. \Rightarrow chip common threshold I_{th} and pixels I_{dac} .
- XPAD2 initial threshold dispersion 60 $e^ \Rightarrow$ pixels not tuned < 3%
- manufacturing problems : leakage in bumping process
 ⇒ new foundry using the same masks
- threshold dispersion increase strongly pprox 120 e^- on most chips
 - \Rightarrow pixels not tuned < 15%

However, even if all the pixels are not perfectly set, the XPAD2 detector appears as a usefull tool for recording new data in SAXS and diffraction on a synchrotron beamline in the range 15 - 25 keV.

SAXS application

Data have been compared with FOB CCD^{*} ones using the same setting.

The low noise achieved with the XPAD detector allows to improve the measurement of weak scatterer like water : the signal observed without sample is really lower with XPAD than with the CCD (fluorescence, PSF tails ...)

⁶ PI-SCX-1300, Roper Scientific (EEG 1340×1300, 50 μm pixel size, dark corrected)

Powder diffraction application

Scintillator and slits \rightarrow 2d-detector.

- Diffraction along cones
- Data redondancy with 2D detector
- 60° collected at high resolution
- angular aperture 4^o at 1m

With 0-D detector pipes and slits remove diffuse scattering, background level partly removed with conic pipes on 2d-detector.

Powder diffraction application (2)

Kinetics potentiality of XPAD2

Whole electronic designed to allow kinetics studies (ms range)

- chips register 16bits + overflow
- on-board memories 32 bits
- exposure time : $1ms \rightarrow 8300s$
- dead time for reading :
 - whole image 2ms
 - overflow $16\mu s$ each 10ms
- on-board storage :
 - 423 images < 10ms
 - 233 images >= 10ms

Images of 10 ms each taken of a 2s movies showing diffraction while the sample crosses the beam at D2AM SAXS camera.

The quench of $Al_{2x}Ca_yO_{3x+y}$ ceramics can lead to vitrous or crystalline oxides. The transition between the liquid state and the cristalline one occurs in less than 20ms and may exhibit some transient phases. Data collection is limited by the cell aperture, which has been designed for linear detector, diagram reconstructed from a few frames of 20ms around crystallisation.

Multilayers : Ferroelectric superlattice

27 (17 PbTiO3,17 BaTiO3) superlattice / MgO :

large lattice mismatch \rightarrow in-plane polarization \rightarrow tetragonal distortion.

Physical behaviour of such compounds is primarily dependent on their epitaxial crystalline

quality, their composition and their structural perfection.

Out of plane : strain / chemical

In plane : 2 PTO domains tetragonal distortion

The reciprocal maps are recorded scanning the XPAD detector and rebuilt from the collected reciprocal slices. Compared to standard data collection the time can be reduced by 100. Intensity on substrate peak can reach $10^9 \nu/s$! At the time, one major limitation is related to the software needed to map data collected on images to reciprocal lattice with the needed accuracy.

XPAD3 design

- Obsolescence of the AMS-CMOS 0.8 μm technology used for XPAD2
- A new XPAD3 using $0.25\,\mu m$ technology with $25\,\mu m$ bumps
- New analog chain

	XPAD2	XPAD3S	XPAD3C	
polarization	both	e^+ (Si)	e^- (CdTe)	
pixel size	330 $ imes$ 330 μm^2	$130 imes 130 \mu m^2$		
chip size	$8 imes 10 mm^2$	$10 imes 15 mm^2$		
counting rate	$2.10^7 ph/s/pixel$	$2.10^6 ph/s/pixel$ (\equiv count/surface)		
photons rate	$2.10^6 ph/s/pixel$	$2.10^5 ph/s/pixel$ (\equiv count/surface)		
counters (bits)	16 + 16 ext	$12 + 16 ext$ (\equiv count/surface)		
energy range	(5) $15 \rightarrow 25 keV$	$7 \rightarrow 32 keV$	$7 \rightarrow 60 keV$	
energy edges	low level	low level	low and up levels	
pixels/chip	$24 \times 25 = 600$	$80 imes120pprox1.10^4$		
pixels/module	$8 \times 600 \approx 5.10^3$	$pprox 7.10^4$		
pixels/detector	$pprox 4.10^4$	$pprox 5.10^5$		
geometries	8×8 or 2×5	7×8 and		

XPAD3 chips

berar@esrf.fr, Trieste, Jan. 18th, 2007 XPAD : pixel detector for material sciences

in

XPAD3 preliminary results

Test of the low edge and of amplifier linearity and response

First setting of the pixels using the internal calibration mode.

The dispersion remains very low as expected from theoretical modelisation.

XPAD3 first images using Am source

Calibration test are scheluded on Jan. 23th at D2AM Optical test will follow on next BLC days.

berar@esrf.fr, Trieste, Jan. 18th, 2007 XPAD : pixel detector for material sciences