Line-Profile Analysis and Standards

Davor Balzar

Materials Science and Engineering Laboratory National Institute of Standards and Technology and Physics Department University of Colorado Boulder, Colorado

EPDIC-6

Budapest August 25, 1998

Outline

Diffraction-line profile

• Broadening:

- Instrumental Contribution
 - Model or measure?
 - Synchrotron
 - Standards
- Physical contribution
 - Convolute or deconvolute?
 - Experiment
 - Voigt function

• RR

- Triple-Voigt model
- Anisotropy modeling

• Conclusions and call for your contribution

Final line shape by convolution (numerical!)

- Measure ("empirical" or "standard" approach):
 - Analytical-function fit (Lorentz, Gauss, Voigt,...)
 - Model the angular dependence

- Calculate ("fundamental parameter" approach):
 - Wilson, Klug & Alexander
 - KOALARIET (Coelho & Cheary)
 - BGMN (Bergmann)

"Fundamental-parameter" approach

Deficiencies: Advantages: Understanding of a physical background Relative importance of different factors

More accurate modeling of profiles?

 Some contributions cannot be modeled

STANDARDS

 Optical elements imperfect

Fewer parameters?

	BGMN	KOALARIET
γ	7 L	AF
ω	4 L ²	PV, PVII
S	L	L
D	L ²	G

Voigt-function fits to the LaB₆ line profiles

1st approximation:

 $\beta_C^g(2\theta) = a \tan \theta$; $\beta_G^g(2\theta) = b$. $a = \Delta \lambda / \lambda$

A measurement at only *one* angle suffices to estimate the instrumental contribution!

Variance of the profile (meansquare broadening)

 $\Delta \lambda / \lambda = \left[\omega_{\rm M}^2 + \omega_{\rm A}^2 + ({\rm FWHM}_{\phi} \cot \theta)^2 \right]^{1/2}$

$$\Gamma^{2} \approx \phi^{2} (2 \tan \theta / \tan \theta_{\rm M} - \tan \theta_{\rm A} / \tan \theta_{\rm M} - 1)^{2} + (w_{\rm ES} / D_{\rm SS})^{2} / 12$$

FWHM_{ϕ} (2.5 GeV,8 keV) = 0.0190°; $w_{\rm ES}/D_{\rm SS}$ = 0.0286° $\omega_{\rm M}(111 \text{ Si}, 8 \text{ keV}) = 0.0021°$; $\omega_{\rm A}(111 \text{ Ge}, 8 \text{ keV}) = 0.0045°$

G

Physical origins of broadening (Microscopic approaches)

- Krivoglaz & Ryaboshapka, 1963
- Wilkens
- Ungár, Groma & Mughrabi
 - Density and arrangement of dislocations
- Crystal symmetries:
 - Cubic (monoatomic lattice!)
 - Hexagonal (Klimanek & Kužel)
- Weak line broadening, size broadening, instrumental contribution?

110 W (synchrotron)

400 MgO (synchrotron)

NG

Physical broadening modeled by a Voigt function

• Other experimental evidence

- Pressed Ni-powder (least-squares deconvolved) (Suortti *et al.*, 1979)
- Chlorite (Ergun's iterative unfolding) (Reynolds, 1989)

• Theoretical evidence:

- Krivoglaz-Wilkens theory (Levine & Thomson, 1997, Wu *et al.*, in press)
- Warren-Averbach analysis (Balzar & Ledbetter, 1993)

• $G \bigstar L = V$; $V \bigstar V \dots V = V (!)$:

 Both S & D profiles ("double-Voigt" model) (Langford, 1980; Balzar, 1992)

$$\beta_{\rm L} = \sum_{i} (\beta_{\rm L})_{i}$$
$$\beta_{\rm G}^{2} = \sum_{i} (\beta_{\rm G}^{2})_{i}$$

Integral-breadth methods

Line broadening in Rietveld refinement

• Size broadening (Scherrer, 1918)

$$\langle D \rangle_{v} = \frac{K\lambda}{\beta_{\rm S}(2\theta) \cos\theta} = \frac{1}{\beta_{\rm S}}$$

Strain broadening (Stokes & Wilson, 1944)

$$\Delta d/d \approx e = \frac{\beta_{\rm D}(2\theta)}{4\tan\theta} = \frac{\beta_{\rm D}}{2s}$$

• Observed profile is a Voigt function

$$\Gamma_{\rm G}^2 = P/\cos^2\theta + U\tan^2\theta + V\tan\theta + W$$

Modified TCH pVoigt

(Thompson, Cox & Hastings, 1987)

Physical significance of the TCH parameters?

 $\Gamma_{I} = X/\cos\theta + Y\tan\theta + Z$

 $\Gamma_{G}^{2} = P/\cos^{2}\theta + U\tan^{2}\theta + V\tan\theta + W$

- X, P => size parameters
- Y, U => strain parameters

- *V*,*W*,*Z* => instrumental contribution !?
- *Y*, *W* sufficient for approximate results with laboratory data

Recombine into Voigt !

• More parameters with synchrotron and neutron data (*Y*, *W*, *V*, *U*)

Triple-Voigt model!

<u>Anisotropic</u> line broadening in Rietveld refinement

 Thermal-parameters-like ellipsoids (size + strain) (Le Bail, 1985)

Cubic symmetry => SPHERES

• Platelets

(Greaves, 1985; Larson & Von Dreele, 1987)

 $\Gamma_{\rm L} = (X + X_e \cos \phi) / \cos \theta + (Y + Y_e \cos \phi) \tan \theta; \quad \phi = \langle (\mathbf{H}_{hkl}, \mathbf{A}_p) \rangle$

Anisotropic line broadening in Rietveld refinement

- Elastic-dependent anisotropic strain
 - Thompson, Reilly, and Hastings, 1987 (hexagonal)

$$\Gamma_{\rm G} = \left[A + \frac{Bl^4 + C(h^2k^2 + k^2l^2) + Dh^2k^2}{(h^2 + k^2 + l^2)^2}\right]^{1/2} \tan\theta$$

Stephens, in press (all Laue classes)

$$\Gamma_{A} = \left[\sum_{HKL} A_{HKL} h^{H} k^{K} l^{L}\right]^{1/2} d^{2} \tan\theta$$

15 A_{HKL} (triclinic); 2 A_{HKL} (cubic)

Voigt strain-broadened profile

$$\Gamma_{\rm L} = X/\cos\theta + Y\tan\theta + \zeta \Gamma_{A}(hkl)$$

 $\Gamma_{\rm G}^2 = P/\cos^2\theta + U\tan^2\theta + V\tan\theta + W + (1-\zeta)^2\Gamma_{\rm A}^2(hkl)$

NS

Anisotropic line broadening in Rietveld refinement

- Elastic-dependent anisotropic strain and anisotropic size (Popa, 1998)
 - Strain model effectively identical to Stephen's approach for all Laue classes
 - Size model: expansion in a series of spherical harmonics

$$\langle D \rangle = D_0 + \sum_{l,m} D_l P_l^m(\cos\Phi) e^{im\phi}$$
 ITERATION!

Gauss strain + Lorentz size broadened profile

Physical background

 Stephens & Popa's strain model <=>
Stokes & Wilson (1944) approach !

$$\Gamma = \left[A + B \frac{h^2 k^2 + k^2 l^2 + h^2 l^2}{(h^2 + k^2 + l^2)^2}\right]^{1/2} \tan\theta$$

and

Groma, Ungár & Wilkens (1988) microscopic line-broadening theory

$$\overline{C} = A + B \frac{h^2 k^2 + k^2 l^2 + h^2 l^2}{(h^2 + k^2 + l^2)^2}$$

Reuss approximation

• Other (Voigt, Hill, Eshelby-Kröner)?

Future directions (instead of Conclusions)

Instrumental broadening

- Refine the "fundamental-parameter" approach
- New SRMs

• Physical broadening

- Microscopic approach (Krivoglaz-Wilkens-Mughrabi-Ungár) incorporate into widely-used methods
 - W-A & W-H (Ungár & Borbély, 1996)
 - RR (Wu, Gray & Kisi, in press)
- Stacking faults, twins, antiphase domains,...
 - RR (GSAS)

Analytical approximation to physical model

• Voigt or something else ?

Line-broadening "study" (Round Robin)

Standards

- Instrumental standards
 - New material?
 - Comparison to "fundamental-parameter" approaches?
- Broadening standards?

• Methods

- Integral breadth
- Fourier
- Microscopic
- ▶ ?

balzar@nist.gov

Web page