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Abstract Computer modelling and theoretical analysis
are used to explain the nearly zero and slightly negative
coefficients of thermal expansion in b-quartz well above
the a-b phase transition temperature. Quartz was selected
for study as an archetypal material with a framework
structure of stiff units, namely SiO4 tetrahedra, linked
through shared oxygen atoms as very flexible hinges.
The contributions of the soft mode, the Vallade mode,
the TAz phonon branch and the phonon spectrum as a
whole are discussed in detail. The results fully support
and illustrate a recent theory of the negative contribution
to thermal expansion in framework structures. It is a geo-
metrical effect due to the rotation of the tetrahedral units,
folding together as they vibrate. The very rapid increase
in the lattice parameters for about 20 K above the transi-
tion temperature is well accounted for within quasihar-
monic theory, and is therefore not evidence for critical
fluctuations or fluctuating patches of a+, a� structure.

Introduction

Ceramics that withstand thermal shock are technological-
ly important. Such materials need to have ultra-low coef-
ficients of thermal expansion a (Hummel 1984), and oth-
ers even have negative a at least in some crystallographic
directions e.g., cordierite (Hochella and Brown 1986), b-
eucryptite (Tscherry et al. 1972; Schulz 1974), dehydrated
analcime (Korthuis et al. 1995; Pryde et al. 1996; Evans et
al. 1997). A recent theory (Heine et al. 1998) has shown
how a negative contribution arises as a geometrical effect
in framework structures. By a framework structure we
mean one consisting of rather stiff tetrahedral or octa-
hedral units such as SiO4, AlO6, jointed into a framework

by shared oxygen (or other) atoms at their corners. The
geometrical negative contribution to a arises from the ro-
tational oscillation of these units under thermal agitation.
It contrasts with the normal positive expansion due to the
anharmonicity of interatomic forces (Ashcroft and Mer-
min 1981; Downs et al. 1992). Where the observed a is
very small, we can infer the existence of a negative con-
tribution such as discussed here, on top of the normal pos-
itive anharmonic part.

The purpose of the present work is a computational
study of thermal expansion in b-quartz as the first detailed
case study of the negative geometrical effect, which in
fact turned up a couple of surprises mentioned below.

The origin of the geometrical negative contribution to
a can be seen qualitatively from Fig. 1 depicting what we
shall term `2D (two dimensional) perovskite'. It is of
course a section through the octahedra of the real 3D-pe-
rovskite structure, but we shall regard it more simply as a
2D structure of squares. The tetrahedral or/and octahedral
units of framework structures are usually very stiff, but
are rather loosely jointed at the shared corner atoms with
a bond bending force constant at the corners as much as a
hundred times smaller than the stiffness of the units. The
coherent set of rotations depicted in Fig. 1 preserves near-
ly or exactly the sizes of the units, while reducing the
space between them and reducing the lattice constant as
the units fold together under the rotations. We have for
the area of the 2D unit cell at rotation angle q

A q� � � A0cos2q� A0 1ÿ hAq2
ÿ �

; �1�
where hA is a geometrical constant (equal to unity in this
case) specific to the mode of rotation, so that at tempera-
ture T we can write

A T� � � A0 1ÿ hA q2

 �

T

ÿ �
: �2�

As the temperature increases, the amplitude of thermal
agitation increases. Thus the thermal average áq2ñT in-
creases with T, and the unit cell area (Eq. 1) decreases,
giving a negative coefficient of thermal expansion. We
can carry this very qualitative picture a little further.
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The value áq2ñT can be derived easily from the theory of
simple harmonic motion and the principle of equipartition
of energy. Quite generally in simple harmonic motion, the
frequency squared, w2, is the ratio of the restoring force
constant to the inertia coefficient. Thus for rotational os-
cillations at temperature T we have potential energy

V � 1
2 Iw2 q2


 �
T� 1

2kBT �3�
where I is the moment of inertia of the square, tetrahedron
or octahedron and kB is Boltzmann's constant. Thus we
have for the area in Fig. 1

A T� � � A0 1ÿ hA
kBT
Iw2

� �
: �4�

The thermal expansion coefficient

a�ÿhA
kB

Iw2
�5�

is thus negative. We shall term this our geometrical effect
because it arises from simple rotations of the units with
the value of h determined by geometrical considerations.
Equation (5) already makes the important point that a low
w leads to a large effect.

Figure 1 and Eq. 5 indicate the connection between
negative expansion and recent work on what are called
`floppy modes' (Dove et al. 1997) and Rigid Unit Modes
(RUMs) (Dove et al. 1991, 1992, 1995; Hammonds et al.
1996). The rotation in Fig. 1 can be achieved without any
distortion of the stiff units and is therefore an example of
a RUM. With the bond bending force constants between
the units at the corners being so weak, we expect such
RUMs to have a very low frequency and hence from
(Eq. 5) to give a strong negative contribution to a. RUMs
are involved in other physical processes, particularly as
pathways for many displacive phase transitions, e.g., in
perovskites the mode depicted in Fig. 1 (Hammonds et
al. 1996). They can also determine cation ordering in sil-
icates, give diffuse X-ray and electron scattering (Dove et

al. 1996) and hold catalyst ions in zeolites (Hammonds et
al. 1997a, b, 1998).

In the present work, b-quartz has been chosen for a
quantitative study of a material with negative a, in order
to document in detail our ideas about the geometrical or-
igin of the negative effect. It is about the simplest tetrahe-
dral framework material, and its lattice vibrations have
been well studied in relation to RUMs (Dove et al.
1991, 1995). Indeed it was the study of the incommensu-
rate phase of quartz (occuring over a range of 1.5 K be-
tween the a and b phases) which first prompted the gen-
eral study of RUMs (Tautz et al. 1991; Vallade et al.
1992). The coherent rotation of tetrahedra leading from
b-quartz to the a form (Fig. 2) is a RUM, which we shall
refer to as the soft mode (SM), so that quartz would en-
able one to see the special role of the soft mode involved
in a phase change. Moreover there is a well tested expres-
sion for the interatomic forces in SiO2 (Tsuneyuki et al.
1988) as a basis for studying the lattice vibrations compu-
tationally. The experimental data for the expansion of b-
quartz are shown in Fig. 3, where it is convenient not to
plot a but the actual changes of the a and c lattice param-
eters as measured by precision neutron diffraction (Car-
penter et al. 1998). We note indications above 860 K of
a small contraction in c and practically zero expansion
in a. As mentioned before, we take zero expansion as
an indication of the negative geometrical contribution
on top of the normal anharmonic positive expansion.
The soft mode in the b-phase leads to a contraction exact-
ly analogous to that in Fig. 1. This is bound to be so be-
cause the high symmetry b-structure has to have maxi-

θ

Fig. 1 Rotational motion in `2D-perovskite', showing the rotation
of the units by an angle q. Note the reduction, due to the rotation,
of the size of the square unit cell (dashed)

Fig. 2 The structure of b-quartz (top) projected onto the ab plane,
and of a-quartz (bottom) derived from b-quartz by freezing in the
soft mode consisting of rotations of the tetrahedra by an angle q
about the axes shown
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mum volume by symmetry, with a decrease in volume as
the tetrahedra fold up together from the rotations. Thus
the a-structure has lower volume than b-quartz, and both
a and c lattice parameters increase with increasing T in
the a-phase as the order parameter (angle of rotation from
the hexagonal b-quartz) decreases. This change is enor-
mous on the scale of Fig. 3, where we are concerned only
with the effect of rotational fluctuations in the hexagonal
b-structure. To see our geometrical fluctuation effect in
the lattice expansion we therefore had to go to b-quartz,
and not the a-phase where our effect is swamped by the
static structural change.

The present paper presents a detailed calculation of the
thermal expansion of b-quartz and its interpretation in
terms of the geometrical picture and theory introduced
in simplified form in Fig. 1 and Eqs. 4 and 5. The tradi-
tional theory of lattice expansion which we shall call
the Grüneisen theory is presented briefly in the next Sec-
tion, expressed in terms of the reduced Grüneisen con-
stant

gred
c k j� � �ÿ1

2

@w2
kj

@ec
�6a�

for the phonon mode of wave vector k in phonon band j
where ec is the strain dc/c, and similarly

gred
ab k j� � �ÿ1

2

@w2
kj

@eab
�6b�

where eab=da/a for varying the a and b lattice parameters
simultaneously keeping the hexagonal symmetry. These
reduced Grüneisen constants gred are simply related to
the more conventional Grüneisen constants g by

gc k j� � �wÿ2
kj g

red
c k j� �; �7a�

gab k j� � �wÿ2
kj g

red
ab k j� �: �7b�

The phonon bands w2
kj are computed from the interatomic

forces and hence the gred(k j) by varying the lattice param-
eters as we will see in the section on computational meth-
ods and results. The contribution of each phonon mode to
the thermal expansion is expressed in terms of its gred(k j)
and the result summed. This formulation includes every-
thing, i.e., both the negative geometrical contribution
and the positive anharmonic part. But the geometrical ef-
fect (alone) can also be expressed in terms of calculable
geometrical constants hab(k j), hc(k j) analogous to hA in
Eq. 1 (Heine et al. 1998), and we shall interpret some
of the gred(k j) in terms of them in the Section on discus-
sion of the computed Grüneisen constants, particularly for
the soft mode and for the TAz modes for k in the a* di-
rection, as well as the general pattern of gred(k j) through
the bands. One of the surprises was that the largest nega-
tive contribution comes from the TAz modes, which are
also RUMs. We should emphasise that RUMs are just a
few special modes along special lines and planes in the
Brillouin zone. If we think in terms of translations and ro-
tations of tetrahedra, we can say that half the phonon
spectrum is concerned with rotations and indeed the
h(k j) are comparable throughout the whole spectrum. It
is the w�2 weighting factor in Eq. 4 that gives a particular
emphasis to the RUMs and nearly-RUMs. The total re-
sults for the thermal expansion will be presented and in-
terpreted semiquantitatively in later sections.

At the outset of the present work it was thought that
the soft mode would make the dominant negative contri-
bution to the expansion. It is a RUM, gives contractions in
both a and c analogous to Eq. 1, and has a low frequency
in the b-phase which in fact goes to zero as T approaches
Tc (Tezuka et al. 1991):

w2
SM T� �
4p2

� 2:122� 10ÿ3 T ÿTc� � THz� �2; T in K: �8�
At the same time it was thought that the rapid rise in a and
c in Fig. 3 in the range of 20 degrees above Tc was some
precursor of the phase transition associated with critical
fluctuations or otherwise beyond the scope of the present
theory. This view turns out to be mistaken. The full theory
also takes into account the temperature dependence of w2

as in Eq. 8, which turns a negative effect into a positive
one and accounts for the rapid expansion above Tc: see
the Section on the contribution of the soft mode band,
and our overall conclusions in final section.

Theory

In this section, we derive equations for thermal expansion
and strain suitable for use within a lattice dynamics com-
putation, i.e., in terms of phonon frequencies in the qua-
siharmonic approximation. The derivations are restricted
to the particular case of b-quartz which is hexagonal
(space group P6222).

We start by considering the free energy of the crystal
in the quasi-harmonic approximation (Leibfried and Lud-
wig 1961)
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Fig. 3 Experimental data on lattice parameters after Carpenter et al.
(1998). The a-b transition temperature is, as closely as can be de-
fined, at the left hand edge of the figure at 841 K
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G�Gel�Gvib �9�
as a sum of an elastic term Gel and the vibrational free en-
ergy Gvib. Both of these are written for arbitrary strains
eab, ec so that by minimising Eq. 9, one can determine
the temperature variations of eab(T) and ec(T) and hence
the thermal expansion. To maintain hexagonal symmetry,
the a and b lattice parameters are always varied together
in our calculations, and eab is defined as

ea � da
a
� eb � db

b
� eab: �10�

In the quasi-harmonic approximation, Gvib is the free en-
ergy of an ensemble of simple harmonic oscillators, but
with temperature and strain dependent frequencies (Dove
1993),

Gvib eab; ec; T� �

�kBT
N u

X
kj

ln 2 sinh
"wkj eab; ec; T� �

2kBT

� �� �
:

�11�

Here we have considered a sample which has unit equilib-
rium volume at zero Kelvin and contains N cells of vol-
ume u each. Also we use periodic boundary conditions,
and wkj is the frequency of the jth mode at wave vector
k in the Brillouin zone. It has been proved that this pro-
cedure gives a good account of the thermal expansion tak-
ing anharmonicity into account (Leibfried and Ludwig
1961).

The elastic energy for the hexagonal crystal is

Gel eab; ec� � � c11� c12� �e2
ab� 2c13eab ec� 1

2c33e2
c

� terms involving shear:
�12�

Minimising the total free energy with respect to eab strain,
we find

@G
@eab

����
ec;T

� 0� 2 c11� c12� �eab� 2c13ec

ÿ 1
N u

X
kj

Ekj
1
w2

kj

gred
ab k j� �

�13�

where

Ekj � nkj� 1
2

ÿ �
"wkj �14�

is the energy of the k jth oscillator (equal to kBT in the
high temperature limit), where

nkj � eb"wkj ÿ 1
ÿ �ÿ1 �15�

is the usual Bose-Einstein distribution (b=1/kBT). The re-
duced Grüneisen constant gred

ab and its relation to the more
usual Grüneisen constant gab have been defined in Eqs. 6
and 7. Similarly minimising the free energy with respect
to ec, keeping a and b fixed, yields

@G
@ec

����
eab;T

� 0�2c13eab� c33ec

ÿ 1
N u

X
kj

Ekj
1
w2

kj

gred
c k j� �:

�16�

Solving the simultaneous equations 13 and 16, we obtain

eab T� � � c33
1
2xab

ÿ �ÿ c13ec

c11� c12� �c33ÿ 2c2
13

�17a�

and

ec T� � � c11� c12� �xcÿ 2c13
1
2xab

ÿ �
c11� c12� �c33ÿ 2c2

13

�17b�

where

xab T� � � 1
Nu

X
kj

Ekj
1
w2

kj

gred
ab k j� � �18a�

and

xc T� � � 1
Nu

X
kj

Ekj
1
w2

kj

gred
c k j� � �18b�

are thermal stresses.
Equation 17 gives the thermal expansion in the a b

plane and in the c direction, from which the coefficients
of expansion aa=ab=aab and ac are obtained by differen-
tiating with respect to T:

aa � deab T� �
dT

; �19a�

ac � dec T� �
dT

: �19b�

We can check that the theory reduces to the usual for-
mula (Ashcroft and Mermin 1981)

a� cVg
3B

�20�

for the coefficient of expansion a of an isotropic material
where B is the bulk modulus and cV the specific heat per
unit volume. The conventional Grüneisen parameter

g�ÿ@ lnw
@ lnV

����
P;T

� 1
w2
� ÿ1

2
@w2

@eV

����
P;T

� 1
w2

gred �21�

is assumed to apply to all phonon modes equally. For an
isotropic material c11=c33 and c12=c13, and B is given by

B� 1
3 c11� 2c12� �: �22�

We also have

g� gc � 1
2gab �23�

whence Eq. 17 reduces to

eab T� � � ec T� � � e T� � � EV T� �g=3B �24�
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where

EV T� � � 1
N u

X
kj

Ekj T� � �25�

is the total thermal energy of the phonons per unit vol-
ume. The result (Eq. 20) now follows on differentiating
Eq. 24 with respect to T.

Computational method and results for the Grüneisen
constants

To calculate the thermal expansion from Eqs. 17 and 18,
we need to compute the phonon frequencies kj and the re-
duced Grüneisen constants gred

ab k j� �; gred
c k j� �: The latter

from Eq. 6 must be obtained by calculating w2
kj at two dif-

ferent lattice parameters (a0, c0) and (a0+da, c0) for gred
ab or

(a0, c0+dc) for gred
c : The chosen strain was of the order of

0.01%.
These frequencies were computed by a lattice dynam-

ics simulation, taking the b-quartz structure shown in
Fig. 2 of space group P6222 and relaxing it at each
(a, c) using a slightly modified version of the programme
wmin (Busing 1981). The phonon spectrum of the relaxed
structure was computed with the programme thbphon (Pa-
vlides and Catlow 1993) using the Tsuneyuki et al. (1988)
pair potentials. These are known to give a good represen-
tation of the interatomic forces for SiO2, and the phonon
spectra obtained match those of Dolino et al. (1992) and
account for the incommensurate structure (Tautz et al.
1991).

To obtain gred
ab ; gred

c ; the strained and equilibrium pho-
non spectra were differenced. Some results for k=0 are
given in Table 1. When a or c changes, k changes, so
some care must be taken about which wkj(a0, c0) to asso-
ciate with which wk(a, c)j(a, c). It is clear from Eqs. 10, 13
and 16 that we want the change of a given mode with a or
c. With periodic (Born-von Kàrmàn) boundary conditions
on a sample of Na�Nb�Nc unit cells, the k-vectors of the
modes are

k=kaa*+kbb*+kcc* (26)

where

ka=na/Na, 0£na<Na etc. (27)

Hence when a or c changes, we difference modes of the
same ka etc.

As an intermediate result, the phonon spectrum at k=0
is shown in Fig. 4, where a and c were expanded consis-
tently over a wide range by applying a negative pressure
and relaxing. The slopes of the graph correspond directly
to ÿ2gred

V 0 j� � where

gred
V �w2 � ÿ@ lnw

@ lnV

����
P;T

� 1
3

gred
ab � gred

c

ÿ �
: �28�

Immediately we see that the low frequency modes have
positive slopes, and therefore negative gred

V 0 j� �: Note that

many (9 out of 27) modes have negative gred
V 0 j� � (cf. Ta-

ble 1), and that gred
V is independent of volume for each

mode.
The problem with lattice dynamics, especially in a

thermal expansion calculation, is that the phonons can on-
ly be computed at zero Kelvin. At this temperature, b-
quartz is not stable, as can be seen by the negative w2

SM
at the equilibrium volume 132.40 �3 in Fig. 4, and must
be expanded artificially to bring it into a region of stabil-
ity. Not only must wSM be real, but as phonon bands inter-
act, eg., the SM band with TAy along a* as shown in the
computed dispersion curve in Fig. 5, the structure had to
be expanded to give a comparable degree of mode mixing
to that known experimentally, i.e., to put w2

SM T� � where it
really is. At V=135.36 �3 in our simulation, we have
wSM=0 which corresponds to Tc. From (1.8) at 1091 K
we have wSM

2 4p2 � 0:53THz2
�

4p2 � 0:53THz2 as
marked on Fig. 4 at V=135.64 �3. Clearly from Fig. 4
the variation of w2 is linear over this range with no mixing
at k=0 to complicate the picture, so it matters not at which
particular value of (a0, c0) the difference is carried out.
Hence we are justified in calculating Grüneisen parame-
ters by this device of expanding the structure to give a sta-
ble phonon spectrum at zero Kelvin. To get the frequen-
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Fig. 4 Squared frequencies w2(k, j)/4 p2 at k=0 at expanded cell
volumes. Three particular volumes defined in the text are marked
on the upper axis. Note that there are less than 27 distinct frequen-
cies because several modes are doubly degenerate and because the
three acoustic modes disappear at k=0
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cies nearly right as a function of temperature, we adjust
the volume (by applying negative pressure) to generate
the correct experimental wSM as already stated: the other
frequencies will then be very nearly, but not quite, right.

Another problem is that gred(k j), plotted in Fig. 6
along a*, shows a hiccough when two bands cross, or `an-
ti-cross' (interact and hence do not cross but interchange
smoothly), eg., at ka=0.25 in Fig. 6. This is caused by
w2(k, j) being differenced with w2(k, j+1); but the `errors'
or anomalies in the two bands cancel out in Eq. 18 be-
cause w2(k, j)+w2(k, j+1) is a smooth function of a, c.

In Fig. 4 the high modes have large positive gred, but
the low modes have large w�2 factors to combine with
their modest negative gred, so the sign of the thermal ex-
pansion coefficient of b-quartz becomes a question of bal-
ance: do the low frequency modes outweigh those with
high frequency? To answer this, the full computation with
summation over k-space as per Eq. 18 is necessary. Com-
putationally, the summation
1
N

X
k

becomes
1
Ns

X
ks

�29�

where Ns is the number of sampling points ks in the unit
cell of reciprocal space.

Near k=0, the acoustic modes have gredµk2 and hence g
remains finite. However phonon bands vary rapidly near
k=0, and incidentally as one moves away from the a* ax-
is, so that one needs a large number of sampling points.
The sample of points used was

k� 2naÿ 1� �ÿNa
2Na

a� � 2nbÿ 1� �ÿNb
2Nb

b�

� 2ncÿ 1� �
2Nc

c�;
�30�

where 1£na£Na etc., and Na=Nb=2Nc=Ns. The summation
was just carried out for positive c* as it is equal to the
summation over negative c* by time reversal symmetry.
Convergence tests for Ns=16�70 showed that Ns=40
was sufficient. Table 2 shows the mode Grüneisen param-
eter averaged over k-space according to

g j� � �
X

k

cV k j� �g k j� �=
X

k

cV k j� � �31�

for Ns=70, where cV is the specific heat capacity of a
mode.

Table 1 Values of gred
V k j� � at

k=0, and comparison with
Eq. 32

j w=2p
THz

1
2g

red
ab =4p2

(THz)2

computed

gred
c =4p2

(THz)2

computed

gred
V =4p2

(THz)2

computed

gred
V =4p2

(THz)2

Eq. 32

4 0.73 �126.78 �139.48 �130.01 �180.24
5 3.99 �107.35 �129.22 �112.95 �156.61
6 3.99 �107.35 �129.22 �112.95 �156.61
7 8.12 �37.33 �42.91 �38.78 �80.07
8 8.12 �37.33 �42.91 �38.78 �80.07
9 10.94 �46.24 �8.26 �36.46 2.30

10 14.34 118.05 8.82 89.97 133.72
11 14.34 118.05 8.82 89.97 133.72
12 14.48 28.23 215.62 76.58 139.80
13 15.17 �66.05 46.82 �36.91 171.48
14 15.17 �66.05 46.82 �36.91 171.48
15 15.98 23.96 353.39 108.81 209.71
16 16.65 34.09 �248.56 �38.68 243.20
17 19.55 279.09 �52.95 193.50 404.03
18 19.55 279.09 �52.95 193.50 404.03
19 19.78 264.03 446.57 310.94 418.19
20 19.78 264.03 446.57 310.94 418.19
21 20.74 182.26 455.79 252.68 477.49
22 28.94 1447.33 1709.04 1514.48 1101.38
23 29.47 1472.15 1108.01 1378.18 1148.97
24 29.50 1209.76 1513.65 1287.90 1151.21
25 29.50 1209.76 1513.65 1287.90 1151.21
26 33.30 1442.51 1359.32 1420.90 1516.63
27 33.30 1442.51 1359.32 1420.90 1516.63
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Fig. 5 Phonon frequencies for the lowest bands along the k=kaa* di-
rection. SM=Soft Mode at k=0, which mixes with the transverse
acoustic TAy mode polarised in the y direction for ka¹0 to form
the Vallade Mode (VM) beyond the anti-crossing. TAz is the other
transverse acoustic and LA the longitudinal acoustic branch. The
volume was extended so that the calculated soft mode frequency
corresponds to the actual soft mode at 1091 K
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Discussion of the computed Grüneisen constants

The purpose in the present section is to give an interpre-
tation of some of the salient results of the calculated
gred(k j), particularly in the light of the geometrical effect
outlined semiquantitatively in Eqs. 1±5, and developed
systematically by Heine et al. (1998), which we refer to
as Paper I.

Variation of gred(k j) through the phonon spectrum

In Tables 1 and 2 we see that gred and g vary from substan-
tial negative values for the lowest bands, to positive val-
ues at the top of the phonon spectrum. Table 1 gives gred

V at
k=0 corresponding to the gradients in Fig. 4. Table 2
shows g averaged over each band.

In Paper I we showed that very roughly

gred �ÿA�Bw2; A; B> 0 �32�
through the phonon spectrum where A and B represent the
geometrical and anharmonic effects respectively. This fits
the results in Table 1 reasonably well with A/
4 p2=180 THz2, B=1.5, and gives a negative gred for low
modes, going positive for higher ones.

The averaged gab(j) and gc(j) of Table 2 are negative
for the lowest 11 out of 27 bands. This large number of
modes with negative g was originally surprising because
our qualitative picture before the theory of Paper I had
thought in terms of RUMs and near RUMs à la Fig. 1
and Eq. 4 which are far fewer in number. The behaviour
in Eq. 32, which is delved into in detail in Paper I, may
be interpreted as follows. The first term, �A, the geomet-
rical effect, is a reduction in area (Fig. 1) or lattice param-
eters which is more-or-less a local effect. This means it is
a constant in k-space. It is better to think of the second
term in terms of g, where quite simply B=g. It is a feature
of the anharmonic interatomic interaction that its contri-
bution to g is positive and approximately independent of
frequency.

Geometrical interpretation of gred for the soft mode

The purpose of the present subsection is to show that the
computed gred

SM for the soft mode at k=0 can be interpreted
in the geometrical way outlined in the first section. The
soft mode's geometry is well understood (Megaw 1973,
Grimm and Dorner 1975), so the geometrical constants,
h, encountered in the introduction may be calculated ex-
plicitly. We find for the soft mode

hab �
���
3
p .

2 1�
���
3
p� �h i

� 0:317 and hc � 1=2: �33�

To use these h coefficients to interpret the gred
SM in Ta-

ble 1, we need to develop the theory of Eqs. 4 and 5, to
cast it in the form set out in the theory section. To be pre-
cise, the h coefficients may be related to gred by compar-
ing Eqs. 17 and 18, with the temperature dependent part
of Eq. 4 or rather the equivalent expressions for the lattice
constants a(T), c(T). Remember that the high temperature
approximation E=kBT was used in Eq. 4, so that the con-
tributions of one mode to the strains in Eqs. 17 and 18, are
of the form

e k j� � / kBT wÿ2
kj g

red k j� � �34�
which is analogous to the h form of Eq. 4, namely

e k j� � / kBT wÿ2
kj h k j� �: �35�

Then equating Eqs. 34 and 35 allows us to interpret a
computed negative gred in Eqs. 34 in terms of an h coeffi-
cient in Eq. 35. The exact form of the relationship is de-
rived in Paper I:
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Fig. 6 Reduced Grüneisen constant gred
c k; j� � at k=kaa* for the first

four bands j=1 to 4 under the same conditions as in Fig. 5

Table 2 Computed Grüneisen
constants for quartz averaged
over the Brillouin zone for each
band j according to Eq. 31

j 1
2gab gc gV

1 �27.19 �29.52 �27.74
2 �10.19 �11.09 �10.41
3 �6.11 �6.76 �6.27
4 �3.29 �3.58 �3.37
5 �1.64 �1.75 �1.67
6 �0.92 �0.91 �0.92
7 �0.36 �0.61 �0.43
8 �0.15 �0.63 �0.27
9 �0.23 �0.63 �0.34

10 �0.24 �0.60 �0.33
11 �0.02 �0.13 �0.05
12 0.26 0.33 0.28
13 0.31 0.52 0.36
14 0.33 0.66 0.41
15 0.28 0.31 0.29
16 0.35 0.36 0.36
17 0.51 0.65 0.55
18 0.71 0.83 0.74
19 0.67 0.71 0.68
20 0.44 0.36 0.42
21 0.50 0.58 0.52
22 1.66 1.83 1.71
23 1.59 1.60 1.59
24 1.47 1.55 1.49
25 1.37 1.43 1.39
26 1.28 1.36 1.30
27 1.24 1.31 1.26
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gred
s k j� � �ÿ u=3 I� �cstht k j� � �36�

where u is the unit cell volume, I the moment of inertia of
a tetrahedron about the axis pictured in Fig. 2 which en-
ters in Eq. 4, and the cst are the elastic constants. The ap-
proximation stems from the lack of a translational compo-
nent in, and therefore an underestimation of, the inertia
factor, I.

The right hand side of Eq. 36 gives
1
2g

red
ab

4p2
�ÿ u

3 I

� � c11� c12� �hab� c13hc

4p2
; �37a�

gred
c

4p2
�ÿ u

3 I

� �2c13hab� c33hc

4p2
: �37b�

We can now make a detailed comparison with the lat-
tice dynamics results of Table 1. The pair potentials (Tsu-
neyuki et al. 1988) gave the following elastic constants
for the expanded b-quartz used for the calculations:
c11=187.4 GPa, c12=90.0 GPa, c13=116.4 GPa, c33=182.7
GPa and c44=24.1 GPa. Substituting them along with
V=135.65 �3 and I=9.7�10�46 kg m2 into Eq. 37 gives
1
2g

red
ab

�
4p2 �ÿ172 THz� �2

gred
c

�
4p2 �ÿ195 THz� �2: �38�

These geometrical values compare reasonably with the
values �127, �139 (THz)2 in Table 1 from the lattice dy-
namics computation, bearing in mind that the latter in-
clude a positive contribution from the anharmonicity in-
herent in the pair potentials, and the approximation inher-
ent in Eq. 36.

In conclusion, there is reasonable agreement between
the values of gred computed for the soft mode in b-quartz
and those calculated from the analytic geometrical con-
stants h, which validates the whole notion of a negative
geometrical effect and our Eq. 36.

Comparison with experiment for the soft mode

The a-b phase transition temperature, Tc, is defined by
w2

SM � 0; and varies with pressure and therefore with vol-
ume. This pressure variation ¶Tc/¶P is known experimen-
tally (Kravchuk and Tödheide 1996), so that we can de-
duce an experimental value for gred

V : Along the phase tran-
sition in the T�V plane, we have

w2
SM Tc; V� � � 0 �39�

dw2
SM Tc; V� � � 0� @w2

SM

@T

� �
dTc� @w2

SM

@T

� �
dV �40�

and

dV=�(V/B) dP. (41)

Substituting B=53.6 GPa (Zubov and Firsova 1962), ¶Tc/
¶P=263.5 K GPa�1 (Kravchuk and Tödheide 1996) and

@w2
SM=@T � 2:122� 10ÿ3 THz� �2Kÿ1 (Tezuka et al.

1991) gives an experimental estimate for gred
V (SM)=

�15.7 (THz)2, which agrees poorly with the value from
the atomistic lattice dynamics computation of
�130.0 (THz)2 (cf. Table 1). Hence for the soft mode at
k=0, we find

gred
V SM; expt:� � � 0:12gred

V SM; comp:� �: �42�
There are good grounds from previous experience for

believing the general correctness of the interatomic poten-
tials used in the simulation, but there is a substantial dif-
ference between the idealised b-structure stabilised at
negative pressure at 0 K and v=135.65 �3 in the calcula-
tions, and the real b-structure at zero pressure, 973 K
and v=118.12 �3 (Carpenter et al. 1998). One manifesta-
tion is the difference in bulk moduli, Bexpt=56.3 GPa,
Bcomp=133.1 GPa. Also we must remember that the soft
mode is 100% anharmonic in the following sense. From
the lattice dynamics computation at the volume,
119.43 �3, of a-quartz at 0 K, w2

SM constrained to the b-
phase symmetry P6222 is

w2
SM T � 0� �=4p2 �ÿ30:3 THz� �2; �43�

while at Tc this has increased by +30.3 (THz)2 due to an-
harmonic effects:

w2
SM T� �=4p2 �ÿ30:3� 30:3T=Tc THz� �2 �44�

Therefore the volume dependences of these anharmonic
contributions are equally important to our calculation of
gred. We can carry the argument qualitatively one step fur-
ther. The first term in Eq. 44 increases algebraically with
volume as we have seen, giving the gred

V SM; comp� � of
Eq. 42. The second (anharmonic) term arises from a term
b q4 in the total energy due to oxygen ions from different
tetrahedra coming into contact at large rotation angles q.
We therefore expect it to decrease (at given q) as the vol-
ume increases, i.e., to have opposite volume dependence
to the first term in Eq. 44. The large reduction factor of
0.12 in Eq. 42 shows that the two volume dependences
very nearly cancel. Note that the quartic anharmonicity
discussed here is quite separate from the cubic anhar-
monicity responsible for the B term in Eq. 32. We do
not expect other modes except this lowest band to be sig-
nificantly affected in a similar way (Narayanaswamy
1948; Bates and Quist 1972; Castex and Madon 1995).

The TAz mode along a*

The TAz mode is important because it makes the largest
negative contribution to the coefficient of expansion as
we will see in the Section discussing this topic. But here
we concentrate on the TAz mode for k along a*. It is
mode 2 for k along most of the a* axis (Fig. 5) with a
large negative gred (Fig. 6). As gredµk2 for acoustic modes,
and a involves g=gred/w2 where wµk, it is best to work in
terms of g rather than gred. From Fig. 6 and analogous re-
sults for the a, b directions, we deduce
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1
2gab �ÿ25 �45a�

gc �ÿ29: �45b�
One interpretation of this large negative g is in terms of
the geometrical constants h. In our rigid unit model,
shearing quartz with an e5=e4 strain, which corresponds
to the TAz mode, causes a reduction in the a and c lattice
parameters as per Eq. 1, with ha=0.51, hc=1.74. In Paper I
we derive the relationship between h and g for this acous-
tic mode,

ga �ÿ
1

c44
c11� c12� �ha� c13hc� �ÿ 1

2

� �
�46a�

gc �ÿ
1

c44
2c13ha� c33hc� � � 1

2

� �
�46b�

which is analogous to Eq. 36. Using the atomistic compu-
tation's elastic constants given below Eq. 37, we obtain
ga(2)=�14 and gc(2)=�19. These `geometrical' values
compare reasonably with the computed values quoted
above, sufficiently to interpret why they are so large
and negative.

We also have another interpretation. For the TAz
mode, we have

w2 / c44k2 (47)

where c44(=c55) is a positive elastic constant, and the
Grüneisen constant

gV /ÿ
@w2

@V
/ÿdc44

dV
�48�

depends on the stiffness of c44 as a function of strain. It
turns out that an e4 type of shear changes the coordination
of the silicon atoms from nearly perfect tetrahedral to-
wards octahedral coordination, as documented in Table 3
and in Fig. 7. Now stishovite, the high pressure phase of
SiO2 has octahedral coordination, and hence increase of
pressure, thus decrease of volume, favours octahedral co-
ordination. This in turn makes the e4 shear easier at high
pressure, so that it reduces c44 and gives a negative gV.

This explanation relates to the work of Chelikowsky et
al. (Binggeli and Chelikowsky 1991; Keskar and Chel-
ikowsky 1992; Binggeli et al. 1994a, b), who found that
the a-quartz structure shows an elastic instability where
c11ÿ c12� �c44ÿ 2c2

14 goes negative when subjected to a
pressure of ca. 30 GPa, c44 vanishing at ca. 50 GPa. They
trace this effect to a TA mode related to a shear which to-
gether displace the oxygen atoms into a dense b.c.c. struc-
ture (Sowa 1988) with the silicon atoms occupying octa-
hedral interstices. As a result, the Si atoms exhibit an in-
stability between tetrahedral and octahedral coordination.
It is the strain coupling which causes the change in the co-
ordination, which is thus largely a geometrical h effect.

The Vallade mode

So far, we have said that low frequency modes make large
contributions because of the w�2 factor in g, we have stud-
ied the soft mode (k=0) as being easy to picture geomet-
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Fig. 7a±c Histogram of oxygen distances from Si atoms in the b-
quartz structure, counted in 0.5 � bins. a Undistorted structure with
four close oxygen neighbours. b and c Around two types of Si site
after applying an e5 shear. Note the nearly 6-fold (octahedral) coor-
dination in c, with b as an intermediate case

Table 3 Si�O bondlengths in �
in the undistorted b-quartz
structure (e5=0), and around two
types of silicon site Si1 and Si2
after applying a shear e5=0.52

e5=0 Si1 Si2

1.58 1.20 1.52
1.58 1.88 1.52
1.58 1.94 1.80
1.58 1.98 2.02
3.71 2.66 2.12
3.71 2.74 2.46
3.87 3.69 3.67
3.87 3.93 3.71
3.87 4.14 3.85
3.87 4.17 4.01
4.14 4.18 4.32
4.14 4.50 4.39
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rically, and we have seen in Table 2 that band 1 has a con-
tractive effect. In Fig. 5, with k along a*, the soft mode,
SM, mixes with the TAy mode to form a hybrid mode
which we term the Vallade mode, VM, as it was elucidat-
ed by Vallade et al. (1992) with respect to the incommen-
surate phase. Indeed it is in the study of this phase that the
detailed study of RUMs started.

If we simply modulate the SM with exp(ikx), we no
longer have a RUM. The xy shear (e6) is also not a rigid
unit motion: pure TAy modes are not RUMs. However an
appropriate mixture of the two is a RUM (cf. Fig. 8). The
VM is basically a modulated SM (Fig. 2), alternating the
angle of rotation +q, �q. It is convenient for illustration
(Fig. 8) to consider a squared-up wave, with an abrupt
change from a constant positive rotation angle q to �q ev-
ery half-wavelength. The problem occurs at the join,
where half a tetrahedron is rotated through +q and the oth-
er half through �q. For it to retain its integrity, the +q and
�q regions must be displaced positively and negatively
along b in Fig. 8, and the tetrahedra on the boundary
are rotated about c.

To discuss its gred
VM; we must first consider w2

VM; in the
same way as in Sect. 3 of Paper I, writing

w2 � coefficient of q2 in PE

coefficient of _q2 in KE
�49�

as a basic relation of simple harmonic motion. The poten-
tial energy, PE, of the +q and �q regions is exactly equal
to that for the. This is true in our squared-up picture, but
can easily be extended to sinusoidal modulation. There
appears to be zero PE at the boundaries because
w2(VMÞk||a*) is independent of k (Fig. 5) and w2(VM)
and w2(SM) both tend to zero at the same volume. There-
fore for a given q, the potential energies per tetrahedron
for the VM and SM are equal,

PE(VM)=PE(SM), (50)

if we assume zero contribution from only repositioning of
the joining tetrahedra.

The rotational kinetic energy, KErot
VM; is equal to that of

the SM. Even at the boundary, rotation about the c-axis is
of order �q. However, the repositioning of the +q and �q
regions brings in an extra translational kinetic energy

KEtrans
VM � 1

2 mSi� 2mO� � _y2 �51�
per tetrahedron, where y»qd and d is half the length of the
side of a tetrahedron in Fig. 8. So we have

KEtrans
VM � 1

2 mSi� 2mO� �d2
� �

_q2 �52�

KErot
VM � 1

2 2mOd2
� �|�����{z�����}

I

_q2 �53�

and, with Eq. 50,

w2 VM� �
w2 SM� � �

2mO

2mO�mSi� 2mO
� 0:35 �54�

with mO=16 amu, mSi=28 amu. In fact, from Fig 5, com-
puted values are

w2 VM� �
w2 SM� � �

0:422
0:726

� �2

� 0:34; �55�

and since w(SM) and w(VM) both tend to zero at the same
volume, we have

gred(VM)»0.34 gred(SM). (56)

This is in sufficient agreement, considering the semi-
quantitative nature of our analysis, with the ratio in Fig. 6

gred(VM)/gred(SM)=40/140=0.29. (57)

In conclusion, we have interpreted the substantial differ-
ence in ws and gs of the Vallade and soft modes in spite
of their rather similar nature. It is due to the displacive in-
ertia effect noted in connection with Eq. 36.

Calculation of thermal expansion

So far we have considered only the Grüneisen parameters.
We turn now to the calculation of the thermal expansion
coefficients a from the temperature dependent strains
(Eq. 17) and stresses (Eq. 18).

In a simple picture with wkj independent of T, and us-
ing the high temperature approximation Ekj=kBT, the only
term in Eq. 18 which depends on T is kBT. Therefore we
can trivially differentiate strain analytically with respect
to T to obtain a. The contribution of each band to a is pro-
portional to g(j) (cf. Table 2).

In reality Ekj(T) is more complicated Eq. 14, quantum
effects reducing Ekj(T)� Ekj(T=0) to less than kBT and the
high temperature approximation not being valid for a few
of the highest modes. At Tc, "w� kBT for w/
2 p=17.6 THz, and 22.6 THz for Tc+250 K. The highest
bands have frequencies around 33 THz. Another compli-

α+

α-

Fig. 8 Squared-up Vallade mode depicted as the soft mode modu-
lated by a square wave TAy. In the a+ domain, the soft mode is a
rotation through +q which is modulated to �q in the a� domain.
The tetrahedra on the domain boundary are rotated through arc-
tan sin q about the c-axis. Note the large relative displacements of
the two domains in order for the tetrahedra to join up between them
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cation is that w2
SM is very temperature dependent. The VM

mixes with the acoustic modes, leading to a tangle of
crossing and anticrossing in the low frequency phonon
spectrum, which from the w�2 weighting factor is the most
important region for negative contribution to a. However
the temperature dependence of the other mode frequen-
cies gives too small an effect to be significant. For these
two reasons it is simplest to calculate ea(T), ec(T), thus
a(T), c(T) for direct comparison with experiment in
Fig. 3. The thermal expansion coefficients can then be
found by differencing.

Let us in the present section consider only the region
T³860 K where a(T) and c(T) vary roughly linearly with
temperature. We will return in the next Section to the rap-
id rise in a(T), c(T) above Tc to »Tc+20 K which is due to
the temperature dependence of w2

SM as mentioned qualita-
tively in the Introduction. For T near to Tc we also had
some numerical problems due to w2

SM being rather small
and partly due to having to marry two quite separate
codes for structure relaxation (Busing 1981) and for pho-
non computation (Pavlides and Catlow 1993), the numer-
ical approximations in the two codes not being consistent.

We recap briefly the computational method from the
third section of this paper to obtain strains to compare
with the experimental values for the lattice parameters.
For a given T, we take wSM from Eq. 8. The volume,
and therefore a and c, are adjusted such that the phonon
computation yields the same value wSM(T). We then cal-
culate wkj at (a, c), (a+da, c), (a, c+dc) and difference to
obtain gred

a k j� �; gred
c k j� �: These are weighted by the

mode's E(T) and summed over k-space according to
Eq. 18 to give thermal stresses using the k-space sampling
Eq. 30 with Ns=70. The stresses combined with the elastic
constants yield thermal strains and thus the temperature
dependence of the lattice parameters.

The computations for the modes j=2 to 27 are straight-
forward, and give thermal stresses which very nearly vary
linearly with temperature. For the sum of the acoustic
modes j=2 to 4, this variation dx/dT=(�1.4, �1.5)
�106 Jm�3 K�1 is hugely negative, and as we shall see la-

ter is mainly from the TAz mode. The other modes togeth-
er make a net positive contribution increasingly linearly
with temperature of gradient (7.9, 7.5)�105 Jm�3 K�1. As
we will see in the following section, x(j=1), which is
mainly due to the soft mode, is the band which gives
the lattice parameters' variation with temperature its char-
acteristic shape.

From Eq. 42 we saw that the contribution from the soft
mode is grossly overestimated in our computer model us-
ing an expanded b-quartz structure. The computed gred

SM
has to be reduced by a factor 0.12 which will feed through
to the contribution to the thermal stress. Clearly not all of
band 1 needs to be reduced by as much as that, but most
of it is like the soft mode or the Vallade mode, so that the
reduction factor will still be of that order of magnitude.
We can refine it by fitting computed lattice parameters

at � a0
t 1� et� �; �58�

where et is found from Eq. 17 and

xab=Aabxab(j=1)+xab(j=2 to 27), (59a)

xc=Acxc(j=1)+xc(j=2 to 27) (59b)

to the experimental lattice parameters of Fig. 3, with As
and a0

t as fit parameters. This fit is shown in Fig. 9 with
Aab=0.24 and Ac=0.15. We see from Fig. 9 that this gives
a good account of the overall shape and variation of a(T),
c(T) except that the negative coefficient of expansion of
a(T) at high T is overestimated.

Contribution of soft mode band near Tc

We now bring together several points already mentioned
previously connected with the soft mode and the lowest
phonon band j=1 connected with it. The strong tempera-
ture dependence of w2 in Eq. 18 for the SM/VM reverses
the sign of its contribution to a. It is also the cause of the
big rise in a, c above Tc. We shall explain this big rise in
terms of our quasi-harmonic theory. It is not due to some
extra critical fluctuations and not evidence of some abnor-
mal structure such as one made up of domains of a+, a�-
quartz. We will by-pass the numerical problems with the
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Fig. 9 Comparison of the experimental data (Carpenter et al. 1998)
with fitted computed data according to Eq. 58
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computation near Tc with an analytic model. At the end
we consider whether the temperature dependence of the
frequencies of the other modes makes a significant contri-
bution.

Let us first very simply consider the contribution to the
strain from the SM itself,

eSM /ÿ T
T ÿTc

gred
SM

�� �� �60�

where the numerator comes from Ekj=kBT and the denom-
inator is w2

SM T� � from Eq. 8. The soft mode's gred is neg-
ative, so we have taken its sign out explicitly in front. We
conclude that the contribution to da, dc is negative, but
decreasing rapidly in magnitude as temperature increases,
yielding a large positive contribution to a:

de
dT
/� Tc

T ÿTc� �2 gred
SM

�� ��: �61�

This provides a qualitative explanation for the experimen-
tal data at T³Tc in Fig. 3.

To estimate the total effect, as Eq. 18 involves a sum-
mation over the Brillouin zone, we need to construct a
model of w2

k for the band which has the nature of the
SM distortion. As mentioned in the Section on the Val-
lade mode, the SM exists strictly speaking at k=0 only,
but a mixture of it with TAy known as the VM goes soft
as well and exists along á100ñ. Similarly, the lowest mode
along á001ñ has SM nature. Along these directions w is
roughly constant, much as a valley floor, as for the VM,
the lowest band in Fig. 5. Away from these directions,
w rises steeply and quadratically (at least initially), and
we write

w2 k� � �mk2
? �B T ÿTc� � �62�

where k^ is the component of k perpendicular to the a*(S)
or c*(D) axis and B defines the ªheightº of the ªvalley
floorº. The values of m were taken as the average of
two perpendicular directions at 1

2a
� and 1

2c
� respectively.

The integration over the Brillouin zone is in turn approx-
imated by an integration over three cylinders along á100ñ
(S) and one along á001ñ (D) whose total volume is made
equal to (2 p)3/n by adjusting their radius r. After apply-
ing these approximations, Eq. 18 becomes for i=ab, c

xi j� 1� � �3a�kBT
2p� �3 gred

i;S
Rr
0

2pk dk
mSk2�BS T ÿTc� �

�c�kBT
2p� �3 g

red
i;D
Rr
0

2pk dk
mDk2�BD T ÿTc� �

� 3a�kBT
8p2

gred
i;S

mS
ln 1� mSr2

BS T ÿTc� �
� �

�c�kBT
8p2

gred
i;D

mD
ln 1� mDr2

BD T ÿTc� �
� �

:

�63�

Substituting values we have

xc j� 1� � � ÿ2:57� 105T ln 1� 1:95� 104

T ÿTc� �
� �

ÿ1:09� 105T ln 1� 1:51� 104

T ÿTc� �
� � �64a�

and

xab j� 1� � � ÿ4:77� 105T ln 1� 1:95� 104

T ÿTc� �
� �

ÿ1:76� 105T ln 1� 1:51� 104

T ÿTc� �
� �

:
�64b�

Computed values from Eq. 64 fit the form of a single term

x�ÿkT ln 1� e
T ÿTc

� �
�65�

well, where k and e are positive constants, which exhibits
the overall form of Eq. 64. It has the limiting behaviour
limT!T�c x!ÿ1; limT!1 x!ÿke with a maximum at
about Tc+250 K. So it is this lowest band which gives
the overall shape of the lattice parameters' variation in
temperature, notably the rise above Tc, with a peak, and
makes a negative contribution to a at high temperature.

The analytic x(j=1) of Eq. 64 was added to the linear
contributions from the other modes in Eq. 59 and again
fitted to experimental data, again with correction factors
Aab, Ac applied to Eq. 63 for the j=1 band. These factors
include the 0.12 of Eq. 42, the 0.29 of Eq. 57, and all oth-
er variation of gred

ab;c k; j� 1� � and w2(k, j=1) through the
band. The results with Aab=0.05 and Ac=0.08 are shown
in Fig. 10. We see that the rapid rise in a(T), c(T) just
above Tc is reproduced very well, from which we con-
clude that this rise can be accounted for by simple classi-
cal quasi-harmonic theory without critical fluctuations or
more exotic models.

Let us return to the temperature dependence of the oth-
er modes: does this also make a significant contribution to

Table 4 Experimental values of w(T)/2 p in THz for Raman active
modes in b-quartz

853 Ka 873 Ka 923 Ka 933 Kb 973 Kc

0.16SM d 0.26SM d 0.42SM d 0.44SM d 0.53SM d

2.94 2.94 2.94 2.91 2.94
�4.95 �4.95 �4.95
�7.40 �7.31 �7.28 7.49 7.28
12.16 12.21 12.22 11.84 12.20

12.80
13.73 13.75 13.79 13.57 13.91

? �20.42 �20.54 �20.57 20.57
23.92 23.91 23.91 23.74 23.56

? ? ? �31.78 31.93
34.96 35.06 34.98 34.60 35.17

? �36.75 �36.69 36.87

a Castex and Madon (1995).
b Narayanaswany (1948).
c Bates and Quist (1972).
d Soft mode frequencies calculated from Tezuka et al. (1991) for
comparison.
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a? We have ignored it so far and have even put in a spu-
rious w2(Teff) by tuning volume to w2

SM T� �: There are a
few experimental data of w(T, k=0) for Raman active
modes given in Table 4. Let us write

w2(T)=w2(Tc)+B(T�Tc). (66)

For a mode with negative gred, the strain and coefficient of
thermal expansion are proportional to the following:

e/ÿ T
w2 Tc� ��B T ÿTc� � gred

�� ��; �67a�

a/ ÿw2 Tc� ��BTc

w2 Tc� ��B T ÿTc� �� �2 gred
�� ��: �67b�

The point is that B for the other modes is not very dif-
ferent from that of the SM (Eq. 8) as shown in Table 4. The
major difference is that w2(Tc)=0 for the SM but is large
compared to BTC for all the others. Therefore we are jus-
tified in ignoring the temperature dependence of w2 ex-
cept in the case of the soft mode and can safely introduce
a small spurious w2(Teff) into our computer model.

Discussion of the TAz contribution

We have already seen in a previous Section that the TAz
mode's g along a* is strongly negative, but what about its
total contribution to a? The TAz mode is only a RUM
over the a* b* plane. It is among the four lowest modes
over the whole Brillouin zone which interact strongly
with each other away from special symmetry and RUM
directions. This makes the individual contribution of each
type of mode hard to disentangle, but we can make an es-
timate based on the g parameters calculated along the a*
axis where the modes mostly do not mix. As mentioned
above, it is best to work in terms of g rather than gred

for acoustic modes. Then the k-space summation in
Eq. 18 just gives a factor of N. We have

x»kBTg/u, (68)

from which the coefficients of linear expansion aa, ac can
be derived using Eqs. 17 and 19. Along the a* axis, the
pure TAz mode can be identified from Fig. 5 and from
its eigenvector. The Grüneisen parameters are shown in
Table 5, giving (aa, ac) (TAz)=(�14.8, �17.5)�10�6 K�1

as the total contribution from xz shear type of transverse
motion from all modes. This is by far the largest negative
contribution to a and more or less cancels all positive
contributions. Indeed experimentally from Fig. 3 we have
(aa, ac)»(�2,0)�10�6 K�1 at temperatures well above Tc
where the anomalous contribution from the soft mode
has more or less died out and we can ascribe these nega-
tive values as ultimately due to the TAz component.

The other true acoustic mode is the longitudinal one
(LA), and there is the mixed mode SM/TAy)+ which is or-
thogonal to the Vallade mode and is acoustic-like every-
where except very close to k=0 in Fig. 5 (Tautz et al.

1991; Vallade et al. 1992). These have the Grüneisen pa-
rameters shown in Table 5, much smaller than those of the
TAz mode, and give a proportionately smaller contribu-
tion to aa, ac.

The three acoustic modes get mixed over most of the
Brillouin zone, as already remarked, but we can check
the consistency of our picture by noting that the sum of
the values in Table 2 for bands 2, 3 and 4 is very roughly
equal to the sum of the three values in Table 5.

Conclusions and discussion

The theory and experimental data for -quartz are compli-
cated by the soft mode, but in spite of that the geometrical
rotational origin of negative thermal expansion has been
clearly documented in accordance with the qualitative
picture in Fig. 1 and Eqs. 1 and 4. Well above Tc it can-
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Fig. 10a, b Comparison between experimental data and analytic ex-
pression from Eq. 64

Table 5 Grüneisen parameters
for the acoustic modes for k
along the a* axis

Mode 1
2gab gc

TAz �24.9 �28.6
LA �3.0 �3.6
(SM/TAy)+ �3.5 �3.4
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cels the normal positive anharmonic effect to give ap-
proximately zero or even slightly negative expansion.
The reduced Grüneisen parameters calculated for the soft
mode agree satisfactorily with those expected from the
geometrical hab, hc constants, and the same is true of the
TAz mode.

Three aspects of the results were unanticipated but
then satisfactorily explained. As well as adding to our un-
derstanding of b-quartz, they may be expected to have an-
alogues in other materials. The first point is that negative
Grüneisen constants and hence negative contributions to
thermal expansion are not the preserve of a few phonon
modes which are RUMs and have very low frequencies.
In fact nearly half the bands with k along a* have nega-
tive gred(k j), although the lowest ones give the largest
contribution to the expansion because of the wÿ2

k j weight-
ing factor. The reason is that most phonons contain a sub-
stantial rotational part. If we ignore the internal vibration
of the Si atom in a tetrahedron, each tetrahedron has three
translational and three rotational degrees of freedom so
that we may picture the character of phonons to be about
half rotational in general throughout the whole phonon
spectrum. This means that the geometrical negative con-
tribution to gred(k j) is broadly of constant magnitude
across the whole of the phonon spectrum. More detailed
theory (Heine et al. 1998) shows that the anharmonicity
of the interatomic potential contributes to gred(k j) an
amount proportional to w2

k j: Thus the geometrical rota-
tional part dominates at low w and the anharmonicity
dominates for phonons of high frequency, which explains
the systematic variation of gred(k j) from negative to pos-
itive through the spectrum.

A second unexpected point was the dominant negative
contribution of the TAz modes. These are RUMs and
hence have low frequency: the tetrahedra Ároll over one
another' as one applies an xz or yz shear to the crystal.
But another aspect also helps to reduce the elastic con-
stant c55 and hence the frequencies of the TAz modes,
which boosts the w�2 weighting factor: an xz shear tends
to alter the coordination of oxygen atoms around a Si
from tetrahedral towards octahedral, which is known also
to be energetically favourable in the high pressure phases.
This effect is effectively the same as that found by Chel-
ikowsky in the behaviour of the elastic constants of a-
quartz under high pressure.

The most important general lesson concerns the soft
mode. It is a RUM and has negative gred

ab ; gred
c in accordance

with the geometrical rotational interpretation. But the tem-
perature variation of the soft mode frequency changes the
sign of the contribution to the coefficient of expansion.
We can see this simply as follows. The contibution to
the lattice parameters is negative and proportional to

kBT gred
�
wSM

2 T� � �69�
as usual. But the point is how it varies with temperature.
The w2(T) increases with T, so that the whole expression
(Eq. 69) becomes less negative with increasing T, i.e., one
has a positive coefficient of expansion. Because w2

SM T� �
starts at zero at T=Tc, it increases proportionally much

more rapidly with T than the numerator of Eq. 69 does
and hence it dominates the temperature variation. Eq. 69
is proportional to

T
T ÿTc

gred �70�

and differentiating with respect to T demonstrates the
change of sign from a negative expansion to a positive co-
efficient of expansion.

We also saw that the soft mode is troublesome in other
ways. The lattice dynamical calculations are effectively
done at zero Kelvin, where the b-quartz structure is unsta-
ble and the calculated w2

SM is negative. The soft mode is
therefore exceedingly anharmonic, reaching positive w2

SM
above Tc. For this reason the computed gred for the soft
mode do not agree well with the experimental values de-
duced from dTc/dP, differing by a factor 0.12.
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