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55. New developments in direct methods
Hai-fu Fan

1. INTRODUCTION

Even in the early days of the development of direct methods, the

investigators had to answer constantly the question: "Is.the me-
thod now going to the end?'". In reply to this, some people said
"Yes" and withdrew from the competition, others said '"No" and
made further development of the method. Now direct methods have
become routine works in the determination of small molecular
structures. However it does not mean the development of direct
methods should be finished. Contradictorily it signals that the
time is now coming for direct methods to explore new fields of
applications. In fact, new achievements have already been made
in recent years. In this paper, three topics are to be discussed

(1) Solving structures with pseudo-translational symmetry;

(2) Tackling the phase problem of macromolecular structures by

direct phasing of the SIR or OAS data;

(3) Image processing in high resolution electron microscopy.

2. SOLVING STRUCTURES WITH PSEUDO-TRANSLATIONAL SYMMETRY

Structures with pseudo-translational symmetry are important in
mineralogy, structural chemistry and solid state physiés, How-
ever they are difficult to solve owing to the existence of cer-
tain kind of systematically weak reflections. Accordingly a di-

rect method has been developed in order to get rid of this dif-
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ficulty.A structure p(r) possesses the pseudo-translational sym-

metry t of the order p, if there exists t = T/p so as
p(r) Vv p(r + t) . (2.1)
(2.1) means that

p(x) # p(x +t) and [|p(x) - p(x + t)|dr << [p(r)dr
v v

Where t is a pseudo-translation vector; T is the shortest lat-
tice vector parrallel to t; p is an integer greater than l; V is
the volume of unit cell. In the above case, the structure factor
can be written approaximately as:

N/p
F, v ) f.exp(i2 THer.) + f.exp {127 He(r, + t)} +
ooy =] J e

+ ii'jexp{:iZ'lTﬂ-(E_j + ZE)} 4+ eee 4 fjexp{i21ﬁﬂ-(£j + (p - I)E)}

pr
=) f,exp(i2TH-r,) X
521 3 i
[1 + exp(i2 mH*t) + exp(iZWH-2¢t) + -+ + exp{121f§'(p - I)E}]
(2.2)
The sum of the series in the bracket of (2.2) is given by

S = {exp(i2mH*pt) - 1} / {exp(i2mH-t) - 1}
P, if H+t = integer ;
= {
0, if Het # integer

Notice that H-pt = H-T = integer. Hence all reflections with
H-t # integer will be systematically weak leading to an effect
of pseudo systematic extinction. In other words, all the strong
reflections will satisfy the condition H-t = integer. Usually in
solving a structure with pseudo-translational symmetry the phases
of the systematically 'strong' reflections are relatively easy
to determine. However the derivation of phases for the systema-
tically 'weak' reflections will be extremely difficult. In order

to solve the phase problem for the 'weak' reflections by making
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use of the phases previously obtained for the 'strong' ones, a
modified Sayre equation was derived (Fan, 1975; Fan, He, Qian &
Liu, 1978; see also Fan, Yao, Main & Woolfson, 1983):

F =

C]
H,wk 2 \Y g;FH',strFH-H',wk (2.3)

An automatic procedure to use formula (2.3) was established un-
der the collaboration between the direct methods group in York
and that in Beijing. The main points of the procedure are as
follows:

(1) Automatic search of the pseudo systematic extinction
rule is first performed and the reflections are grouped accor-
dingly;

(2) Each reflections group is normalized independently;

(3) The 22

are eliminated and the phase development process is devided into

relationships involving three 'weak' reflections

two steps. In the first step only the phases of the 'strong' re-
flections are developed. Then in the second step the phases of
the 'weak' reflections are derived by making use of the phases
of the 'strong' omes.

This procedure has been incorporated in the structure analysis
program system SAPI-85 (Yao, Zheng, Qian, Han, Gu & Fan, 1985;
Fan, 1986). An example of automatically solving an unknown
structure with pseudo-translational symmetry by SAPI-85 is given
below:

RLD6, C, . H,,NO

277°31779°
b=8.363, ¢=24,747 R, 8=90.22°. There are 74 non-hydrogen atoms

belongs to space group P21/c with a=24.420,

in the asymmetric unit which includes two independent molecules
related by a pseudo-translation vector t = (a + E)/Z. RANTAN-81
(Yao,1981) failed to solve the structure from 100 starting sets
with the default control parameters. On the other hand SAPI-85
with default control yielded almost the complete structure from
the 70th random starting set (see Fig.2.l1). The diffraction da-
ta and refined atomic parameters of RLD6 were kindly provided by

Professor T. C. W. Mak.
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Studies on the application of direct methods to structures with
pseudo~translational symmetry have also been reported by other
authors (Gramlich, 1975, 1978, 1984; Bohme, 1982; Prick, Beurs-
kens & Gould, 1983; Giacovazzo, 1984).

Among the structures having pseudo-translational symmetry, there
is a typical class known as superstructure. Superstructure and
incommensurate structure are both modulated structures. Up to
now, there is no straightforward way to solve incommensurate
structures, in spite of their significance in pure and applied
sciences. Further development of the direct method described a-
bove may be of use in dealing with incommensurate structures.
Recently an interesting type of condensed materials called qua-
sicrystal has been discovered and extensively investigated. The
structure of quasicrystals, though not containing translational
symmetry in 3-dimensional space, can be described in reciprocal
space by a way similar to that used for incommensurate struc-
tures. It can be expected that direct methods can also find

their use in solving the structures of quasicrystals.

c <
-010, 0.25) (040, 0.75)

Figure 2.1

Two independent molecules of RLD6 projected along the
b axis. The fragments shown with solid lines were ob-
tained from the E-map output by SAPI~85 directly.
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3. TACKLING THE PHASE PROBLEM OF MACROMOLECULAR STRUCTURES BY
DIRECT PHASING OF THE SIR OR OAS DATA

Since the 1960's attempts have been made to combine direct me-

thods with the single isomorphous replacement (SIR) and the one-.
wavelength anomalous scattering (0OAS) methods (Coulter, 1965;
Fan, 1965; Karle, 1966). Such a combination would be important
for the structure analysis of proteins due to the possibilities
of reducing the number of heavy-atom derivatives needed for sol-
ving a protein structure, saving the time in data collection
thus enhancing the effective lifetime of the protein crystal and
simplifying the process of the structure determination. However
during the last decade, procedures proposed were not as success-
ful as expected. Recently some progresses have been achieved.
Hauptman (1982a,b) integrated the probabilistic theory of the
triplet structure invariants with the SIR and OAS techniques.
Giacovazzo (1383) reported a similar theory. Karle (1983; 1984a,
b) proposed simple rules for the evaluation of triplet structure
invariants from SIR or OAS data. All these methods have been
successful in deriving large number of reliable triplet struc-
ture invariants using error free data. An alternative procedure
has been proposed (Fan, Han, Qian & Yao, 1984; Fan, Han & Qian,
1984; Fan & Gu, 1985; Yao & Fan, 1985; Qian, Fan & Gu, 1985),
which, by the test with experimental data, has been proved to be
efficient in breaking the enantiomorphous phase ambiguities

yielding large number of reliable individual phases.

3.1. Enantiomorphous phase ambiguities in SIR and 0AS methods

In the SIR case, for a given reciprocal vector H, we have
F = F - F . (3.1.1)

Where FH,N . FH,D and FH,R are the structure factors of the na-

tive protein, the derivative and the replacing atoms respective-
ly. The moduli of FH N and FH Dcan be obtained experimentally.

b4 b4
Accordingly the parameters of the replacing atoms can be found
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and FH R be calculated. Consequently, we have two ways for draw-
3

ing the triangle of (3.1.1) leading to an phase doublet for both

F and F in the phase vector diagram, Fig. 3.1.
H,N H,D
In the case of 0AS, we have
F' = F_ + F" and F. =F, - F" (3.1.2)
H H H,A H H H,A .
Here FH is the contribution of both the normal and the real part
anomalous scattering from the whole unit cell. F; denotes the
conjugate of F; . Fﬁ A is the contribution from the imaginary-
3
part scattering of the anomalous scatterrers, i.e.
NA
n = . " . .
H,A z 1AfA exp(iZ 1H EA) .
A=1
It follows from (3.1.2) that
Pt oo BT 4 2En (3.1.3)
H H H,A " Tt
+ —%
The moduli of FH and FH can be obtained experimentally and
then F!! can be derived. Hence we have also two ways to draw

H,A
the triangle of (3.1.3) leading to an enantiomorphous phase doub-

let for FH as shown in Fig. 3.2. Both the phase doublets in SIR

and OAS cases can be expressed in the generalized form
oy = oy t |80y ) (3.1.4)

In the case of SIR:

' =
¢H ¢H,R b ]
_ “1,,.2 2 2
by = * cos {(Fy [ = Fy = Fy (/2 pFp )
“1,,.2 2 2
A¢H’D = * cos {(FH,D + FH’R - FH’N)IZFH’RFH,D}
(3.1.5)

Where A¢H N and A¢H p are the phase differences of the native
14 ?
and the derivative respectively.

In the case of QAS:
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Y 1 _
% = Py A or O = Oy,a T Yy

where ¢ﬁ A is the phase of F!! A ¢H A is the phase of FH A
3 b 1 b

is the phase diff bet F" .
W, 1is phas ifference between H,A and FH,A

H
only one kind of anomalous scatterer in the unit cell, then

If there is

wH = 7w /2, We have for the 0AS case (see Blundell & Johnson,

1976) i RO
Ap. = % cos {(FH - FH)/ZFH A} . (3.1.6)

Notice that ¢H now is the phase of FH = (F; + F;)/Z

8

B
t
{
> l;
‘2“ ! 5
z 1z
&3/ ur Ju®
<3 |
te i
e “ o
0 Fus 1?.0 " ;
P = 0y v
4p A 4 Fa.r
3 -
e/ ™
=04 uw
= A
Figure 3.1 Figure 3.2
Enantiomorphous phase doublet Enantiomorphous phase doublet

in SIR case in OAS case

3.2, Treatment of errors and the best starting phases in the

presence of enantiomorphous phase ambiguity

The 'best phase relationship'
Following Blow & Crick (1959), we can introduce into direct me-

thods the concepts of 'best phase' and 'figure of merit' for in-

dividual reflections. A best normalized structure factor is de-

fined as
By, best = "l Byl exp by pog,) ’ (3.2.1)

where HH = mH exP(i¢H,best) = fexp(i¢H)P(¢H)d¢H

A triplet phase relationship which consists of the best norma-

lized structure factors is called the 'best' phase relationship'.
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Expressions of the best phase and the figure of merit for a

single reflection with enantiomorphous phase ambiguity

. _ Y
Defining A¢H,best = ¢H,best ¢H , the A¢H,best and m, can be
expressed as follows (Fan, Han & Qian, 1984)

tan(bd, ) = 2{P,(Ad,) - }sin|ag,|/ costo, (3.2.2)

H,best

m, = exp(—cg/Z)[{Z(P+ - %a2+ —;-}(1—c032A¢H)+c052A¢H]15

(3.2.3)
where P+(A¢H) is the probability that A¢H has a positive sign,
while Oy is related to the experimental error and can be derived
from the standard deviation D of the 'lack of closure error'
(Blow & Crick, 1959). m, may be regarded as a measure of re-
liability of A¢H,best . As can be seen, there are three factors
included in the expression of m, :

exp(—ci/Z) a measure of the sharpness of the experimental

distribution of ¢H

2
(P+ - %J a measure of the bias of A¢H towards positive or
negative. It reaches the maximum when P+ =0or 1l
c032A¢H a measure of the closeness of the two possible

+ —_
phases, ¢, = ¢ + |A¢H| and ¢ = ¢! - |A¢H| . It
reaches the maximum when A¢H =0or 7.
Either of the last two factors will have no effect on My when

the other one reaches the maximum.

The best start

_]_
- 2

Substitute P+ =P into (3.2.2). It follows that

0 , if SIGN(cosAp,) = 1
A = {
H,best . if SIGN(coshp) = -1
- = s 0t
or exP(l¢H,best) SIGN(cosA¢H)exp(1¢H) (3.2.4)
Meanwhile, (3.2.3) reducés to
2
m, = exp(—OHIZ)lcosA¢H| . (3.2.5)

Substituting (3.2.4) and (3.2.5) into (3.2.1), one obtains
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EH,bgst = exp(—dﬁ/Z) cosA¢H|EH[exp(i¢ﬁ) (3.2.6)

This is the 'best' normalized structure factor which could be
obtained at the begining from the corresponding doublet. In
octher words, when enantiomorphous ambiguities are present, the
best way to start a direct method process is to use the averaged
value of the phase doublet as the starting phase and use the
weight exp(—0§/2)|cosA¢H| for the corresponding EH'

3.3. Incorporating the phase doublet information into direct

method formulas

Use of modified Sayre equation

Denote the heavy atoms with known positions in the unit cell by
p and the atoms of the unknown part by u. Then according to Fan

(1965;1975) we have the so-called modified Sayre equation as

eH u eH u
= L) _ LT L
FH v Z,FH'FH—H' E( o 1)FH,p > (3.3.1)
H P H,p

where O is an atomic form factor. Replacing FH by |FH|exp(i¢H)

and replacing ¢H by ¢ﬁ + Ad (3.3.1) becomes

H ?
GH u
. = ’ i(-h' ' !
|7, lexp(i8d,) = }{l' Py i Py |exp{i (-ot0 0 #0010+
e
H,u

+A¢H.+A¢H_H-)} - 2 ( 5 - 1)!FH,p|exP{i(¢H,p_¢ﬁ)} . (3.3.2)
p

H,p
Taking the imaginary part of (3.3.2) and denoting -¢ +¢/,+¢

H-H'
by ¢! , we have
@H u
IFH|SinA¢H - {}{{' |F oy [ sin (@340, +AG, 1)}
e
_ Hy,u . _at
E( %, p DIFy plsin(y -op) (3.3.3)

Equation (3.3.3) can be used to refine the sign as well as the

magnitude of A¢H , once a large starting set of A¢H is available,

Use of the combination of Cochran's distribution and Sim's

distribution
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With the expression ¢H = ¢é + A¢H , the Cochran distribution (
Cochran, 1955) can be modified to give (Fan et al., 1984):

(89,) = {2'ﬁIo(a')}"lexp{a'cos(A¢H -89} (3.3.4)

PCochran

where Io(a') is the modified Bessel function,
. ’5
a'=[{] 'KHH,Sln(¢§+A¢ by )} +{{ K1 €08 (@A, +00, 1)} g

tanf' = ) Ky S0 (O3 +AG, +AD, 1) / { KHH,cos(¢ gy HAD, o)

H!
- _ -3/2
= q) +¢H '+¢H HI ] KHH' = 2030 |E EH_H' I .

In the same way, Sim's distribution (Sim, 1959) can be modified

as

P, (B0 = {21¥Io(x)}—1exp{xcos(A¢H~6H)} ., (3.3.5)
where X = ZIEHEH pl/{ZZ§/02} s GH = ¢H o~ ¢é
] u 3

Combination of (3.3.4) and (3.3.5) gives the total probability
distribution of A¢H (Fan & Gu, 1985):

P(AD,) = {21r10{a)}“1exp{acos(a¢ﬂ - B)} . (3.3.6)

2
= ' i
where o [{Z KHH,sin(Q +Ad ,+A¢H_H,)+x51n6H} +

{ Kygp 1 €08 (85+A0, +AcpH_H,)+xcosesﬂ}2f5 . (3.3.7)
H'

- [ .
g'KHH,Sln(Q3+A¢H,+A¢H_H,}+xs1n5H

(3.3.8)

tanB
E K H.cos(d> +A¢H,+A¢ H,)+xcos§

H' i
Since |A¢H| is a known quantity when phase doublet information
is available, the probability that A¢H has a positive sign can

be derived from (3.3.6):

' 1 1 . , .
P+(A¢H) = §-+ Etanh[éln]A¢H]{ngHH,51n(®§+A¢H,+A¢H_H,)+x31n6H}].

(3.3.9)
With (3.3.9) the phase problem is now reduces to a sign problem.
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On the other hand, by maximizing (3.3.6) we have A¢H = . Hence
we can calculate the 'most probable' value of A¢H from- (3.3.8).

By replacing the EH' and E g with their 'best' values, we can

H
modify (3.3.8) and (3.3.9) to give

1 1 .
P+(A¢H) = §~+ E{anh[§1n1A¢H|{g‘mﬂ,mH_H,KHH, x

. ] .
Sln((1)3-'-A¢’I—l'best+A¢H—H'best)ﬂ(SlnﬁH ](3'3'10)
» ' .
and g{,m}l'mﬂ-ﬂ'KHH'Sln(®3+A¢H'bes %% pbese) XS 1n0y
tan(A¢H) =
: f
ErmHImH_H'KHH'COS(¢3+A¢H’bESt+A¢H—H'beSt)+XC056H

(3.3.11)
Formulas (3.2.2), (3.2.3), (3.3.10) and (3.3.11) can be used for
ab initio phasing of the SIR or OAS data leading to unique es-

timates of individual phases.

Use of Hauptman's distribution

Hauptman (1982a,b) integrated the probabilistic theory of the
three—-phase structure invariants with SIR and OAS techniques
leading to a series of formulas, which give unique estimates of
the three-phase structure invariants. However, initial applica-
tions (Z.-B. Xu et al., 1984; Furey et al., 1986) showes that
Hauptman's distribution tended to produce protein phases which
were overly biased toward those of the heavy-atom substructure.
Fortier (1985) incorporated the heavy-atom information into
‘Hauptman's formulas resulting in the increase of accuracy of
phase estimates. An alternative method was proposed recently by
Hao (1986). He incorporated the phase doublet information into
Hauptman's distribution leading to unique estimates of indivi-
dual phases. Unlike Fortier's method, Hao makes use not only the
magnitudes but also the phases of the heavy-atom substructure.
On the other hand Hao's method is related to that of Fan et al.
(1984) by replacing Cochran's distribution with Hauptman's. It

is expected that Hauptman's distribution will give better result.
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3.4. Direct phasing experimental OAS data of two known proteins

In a test calculation, the experimental OAS data of insulin and
APP were directly phased by the procedure of Fan et al. (1984,

1985). Satisfactory results have been obtained.

Data

Insulin crystallizes in space proup R3 with a=82.5, c¢=34.0 X,
Y=1200 and Z=9. There are "6400 independent reflections at 1.9 )3
resolution., The data was kindly provided by Drs G. Dodson and E.
Dodson. APP crystallizes in space group C2 with a=34.18, b=32.92
, ¢=28.44 K, B=105.30° and Z=4. There are 2100 independent re-
flections at 2,1 R resolution. The data was kindly provided by
Professor T. Blundell. 1000 largest E's and 60000 strongest 22
relationships from each structure were used in the test calcula-
tion.

Test and results

. . =1
Starting with P+— 5 values of A¢H,best

using (3.2.2) and (3.2.3) respectively and then substituted into

and mH were calculated

(3.3.10) to calculate new values of P, . Most of them differ
from %—considerably. With the new set of P+ , one more cycle of
iteration led to further improvement on the reliability. In or-
der to examine the result statistically, the reflections were
arranged in descending order of | P, - %{ and then cummulated
into 5 groups, which contain the top 200, 400, 600, 800 and all
reflections respectively. The average error in phase estimates
and the percentage of reflections with the signs of A¢H correct-
ly determined were calculated for each group. The results are
listed in Table 3.la and 3.2a for insulin and APP respectively.
Multiple isomorphous replacement (MIR) phases of insulin and
SIR-0AS phases of APP were also cummulated according to their
figures of merit., The fesults are listed respectively in Tables
3.1b and 3.2b for comparision., In the case of insulin, the iso-
morphism of the sample crystals was not very good. The direct

method phases are obviously better than those from MIR method,
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at least for a thousand of reflections with large E values.On
the other hand the isomorphism in APP was nearly perfect. The
direct method phases are still comparable in quality with those
of SIR-0AS method, so far as one half of reflections at 2.1 R
resolution are concerned. It can be concluded that the direct
method under examine is very efficient in breaking the enantio-
morphous phase ambiguity of protein OAS data. It can provide a
very large number of reliable starting phases, which in turn can

be the base of further phase development and refinement.

Table 3.1
Results on phasing the experimental data of insulin
(a) (b)
Direct phased OAS method MIR method

Group % _Error Group % Error

1 93.0 33° 1 70,0 41°

2 94.5 35° 2 69.5 41°

3 94.0 37° 3 63.5 44°

4 93.5 38° 4 60.9 48°

5 92.3 41° 5 58.8 54°

Table 3.2
Results on phasing the experimental data of APP
(a) (b)

Direct phased OAS method SIR-0AS method
Group %  Errorx Group % Error

1 95.0 24° 1 92.0 16°

2 90.8 30° 2 88.8 20°

3 91.3 29° 3 87.5 24°

4 89.0 32° 4 84.1 30°

5 86.3 36° 5 79.4 39°
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4. TMAGE PROCESSING IN HIGH RESOLUTION ELECTRON MICROSCOPY

High resolution electron microscopy (HREM) is a powerful tool in
the investigation of crystal structures, especially when the
sample is not suitable for X-ray amalysis. However. in many cases
,high resolution electron micrographs without special processing
can not reflect directly the true structure. Cn the other hand,
direct methods are actually some kind of image processing tech-
nique, which may be of use in the proeessing of high resolution
electron micrographs. Under the collaboration of the research
group on crystal structure analysis and that on HREM in the In-
stitute of Physics in Beijing, a new technique of image process-
ing in HREM using direct methods has been proposed, which is a
new junction of X-ray crystallography and electron microscopy.
The procedure is devided into two parts, i.e. the image deconvo-

lution and the resolution enhancement.

4.1, Image deconvolution

Let T(H) denotes the Fourier transform of the intensities of an
electron micrograph (EM). Under the weak-phase-object approxima-
tion*, in which the dynamic diffraction effect is neglected, the
structure factor F(H) is related to T(H) by the following formu-

la:
F(H) = T(H) / 2csinxl(H)-exp{-)(2(H)} . (4.1.1)

Here 0 =7 /AU, X is the electron wavelength and U the accelerat-
ing voltage. sinxl(H)-exp{-xz(H)} is the contrast transfer func-

tion. in which

_ 2 1 3, 4
X, (B) = TAEAHT + S C ATH ,
12,24 2
XZ(H) =m A'HD

* The applicability of the weak-phase-object approximation has
been demonstrated by Unwin & Henderson (1975) for biological
specimens and by Klug (1978/1979) for an inorganic compound.
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Here Af is the defocus value, CS is the spherical aberration co-
efficient and D is the standard deviation of the Guassian dis-
tribution of defocus due to the chromatic aberration (Fijes,
1977). The task of image deconvolution is to find out F(H) from
the corresponding T(H). For this purpose we have to know Af, CS
and D in advance. Among these three factors, CS and D can be de-
termined experimentally without much difficulties. However it is
usually very difficult to measure the value of Af accurately.
Hence in order to carry out image deconvolution, the main pro-
blem is to find out Af. With the estimated wvalues of CS and D,
we can calculate a set of F(H) from (4.1.1) for a given value of
Af, If this value is correct, the corresponding set of F(H)

should obey the Sayre equation (Sayre, 1952)
0 ' '
F(H) = —— ] F(H") F(H-H") . (4.1.2)
Hl

Hence the true Af can be found by a systematic change of the
trial Af. The practical procedure should be as follows:

(1) Calculate a set of T(H) from an EM,

(2) Assign trial values of Af in a wide range with a small
interval, say 10 &. For each trial Af, a set of F(H) is calcu~
lated from T(H) using equation (4.1.1). Reflections with
|sinx1(H)'exp{—X2(H)}| < 0,2 will be neglected,

(3) Calculate the figure of merit S for each set of F(H)
using the following formula (Debaerdemaeker, Tate & Woolfsonm,
1985)

e @) § E(H')E(H-H") }2
H H'

TIEm|® §1] B@HE@-1" |
H H H'

S has a value between O and 1. The greater the value of S, the
better the set of F(H) fits the Sayre equation.
(4) Find out the greatest S and then Fourier Transform the

corresponding set of F(H) to deconvolute the image.

The procedure has been test by simulating calculations with a
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series of theoretical EM of chlorinated phthalocyanine at 2 X

- resolution taken under different Af values. The other conditions
are: Accelerating voltage = 500 kV; CS =1mm; D=150% .

Some of the results are shown in Fig. 4.1. It can be seen that
the deconvolution was quite successful. For further detail the

reader is referred to Han, Fan, Zheng & Li (1986).

Figure 4.1

Deconvolution of theoretical EM's
of copper chlorinated phthalocaynine

a — the expected image; b,c,d and e — theoretical EM's
taken with Af equal to -1000, +1000, -600 and +600 R re-
spectively; f — the deconvolution result.

4.2, Resolution enhancement

Phase extension

An electron diffraction (ED) pattern usually contains informa-
tion up to 1 2 resolution, which is considerably higher than
that which can be reached by an EM. In addition, the intensities
of ED are independent 6f defocus and spherical aberration of the
objective lens. Accordingly, under the weak-phase-object appro-
ximation a set of high resolution structure amplitudes of good

quality can be obtained from an ED pattern. However, the struc-
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ture analysis by ED alone is subject to the well known difficul-
ty of the 'phase problem'. On the other hand, an EM after suita-
ble deconvolution can provide phase information corresponding to
about 2 X resolution. This can greatly reduce the complexity of
the solution of the phase problem. Hence an improved high-reso-
lution image may be obtained by a phase extension procedure using
the amplitudes of the structure factors from ED and starting
phases from EM. Test of the procedure has been done using also
the model structure of copper chlorinated phthalocaynine. The
results are shown in Fig. 4.2, from which it can be seen that,
while direct methods failed to solve the structure from the ED
data alone, phase extension gave satisfactory result., For further

detail see Fan, Zhong, Zheng & Li (1985).
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Figure 4.2

phase extension from 2 to 1 R resolution

a— 2 X EM after deconvolution; b — image resulted
g
from phase extension using the 2 R EM and the corre-
p 14

sponding ED data; ¢ — E-map from the direct method

soclution of ED data; d — the expected 1 R image.
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Structure factor extrapolation

While the technique of phase extension has been known for a long
time, the extrapolation of structure factors on both magnitudes
and phases is seldom used. Fan & Zheng (1975) pointed out that,
even at very low resolution, there will be often enough reflec-
tions to set up simultaneous equations solving, at least in
theory, the complete structure. Hence it is possible to extrapo-
late a set of low resolution structure factors to obtain that of
high resolution ones. Sayre equation can be used for this pur-
pose. Substituting a low resolution set of structure factors in
the right hand side of Sayre equation (4.1.2), structure factors
beyond the resolution limit can be obtained from the left hand
side. This can be made iteratively to improve the result. For

the indication of discrepancy, an R factor was defined as

Il ) - ) FHDFGH-H') |
H H'
R = , (4.2.1)
Y IF ) |
H

where ZH includes only the low rescolution structure factors,
while ZH' includes also those structure factors obtained from
extrapolation. Normally during the initial cycles of iteration
the R factor will decrease. The process should stop when R
reaches a minimum. The extrapolation can also be performed using
least squares method which minimizes the R factor. The above
procedure was verified in 1975 with a one-dimensional model
structure. Recently Liu, Fan & Zheng (1986) used a similar pro-
cedure to enhance successfully the resolution of a theoretical
EM. The result is shown in Fig. 4.3.

In conclusion, direct methods have entered the field of HREM.
The preliminéry results were encouraging. We can expect that,
direct methods will be as successful in HREM as they were in

X-ray crystallography.
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Figure 4.3

Structure factor extrapolation
of copper chlorinated phthalocaynine

a— 2 X EM after deconvolution; b — resulted image of
extrapolation from 2 - 1 2 resolution; ¢ — expected
image at 1 resolution.
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