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1. The phase problem in diffraction analysis for solving crystal structures
In diffraction analysis, a crystal structure is represented by a general distribution of scattering

density ρ(r). In the case of X-ray diffraction ρ(r) is the electron density function, while in the case of
electron diffraction it is the potential distribution. The relative scattering amplitude of a unit cell is
expressed by the structure factor F(H). Neglecting the dynamical diffraction effect F(H) is given by the
Fourier transform of ρ(r):

F(H)  =  ∫V  ρ(r)exp(i2πΗΗΗΗ....r)dv
or

                                        F(H)  =  Σj  fj exp(i2πΗΗΗΗ....rj)     .                                    (1)

Where H is a position vector in reciprocal space, i.e. the diffraction vector of F(H); r is a position vector
in direct space; V is the volume of the unit cell; fj and rj are respectively the atomic scattering factor and
the position vector of the jth atom within a unit cell. From (1) according to the Fourier transform theorem
we have

ρ(r)  =  ∫τ  F(H)exp(-i2πΗΗΗΗ....r)dτ
or

                                      ρ(r)  =  ΣH  F(H)exp(-i2πΗΗΗΗ....r)     .                                  (2)

Here τ denotes the entire reciprocal space. Usually F(H) is a complex quantity and can be written as

                                                       F(H) = |F(H)|exp(iϕΗ)     .                                    (3)

If one can measure from a diffraction experiment the whole set of structure factors F(H), including the
magnitudes and phases, then the crystal structure analysis will be a straightforward task by calculating
ρ(r) from (2). However from the experiment only the magnitudes |F(H)| but not the phases ϕH of structure
factors can be obtained. Hence one has to recover the lost phases before equation (2) can be used. This is
the well-known "phase problem" in diffraction analysis.
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2. Direct methods in crystallography
Direct methods is that kind of method which can retrieve the "lost" phases ϕΗ directly from a set

of structure factor magnitudes |F(H)|. The mathematical basis of this is seen from equation (1) which can
be split into the real and imaginary parts by making use of (3), i.e.

|F(H)|cosϕΗ  =  Σj  fj cos(2πΗΗΗΗ....rj)
and

                                             |F(H)|sinϕΗ  =  Σj  fj sin(2πΗΗΗΗ....rj)     .                             (4)

The unknown quantities in (4) are the phase angle ϕΗ and the atomic coordinates xj, yj and zj (rj = xja +
yjb + zjc; a, b and c are vectors defining the unit cell). Each measured magnitude |F(H)| gives two
simultaneous equations and at the same time introduces one unknown quantity ϕΗ. Suppose that there are
300 independent atoms in the unit cell. Then there will be 900 unknown atomic coordinates. By measuring
the magnitudes of 900 independent structure factors we can set up 1800 simultaneous equations, which are
in principle sufficient to solve all the unknown quantities --- 900 phases and 900 atomic coordinates. In
the case of X-ray diffraction, for a crystal of moderate complexity it is trivial to collect intensities of
thousands of independent reflections. Therefore the phase problem and the crystal structure are over-
determined by the whole set of structure factor magnitudes |F(H)|. Nevertheless crystal structures are not
really determined by solving the simultaneous equations (4). Special mathematical approaches are used in
direct methods to derive phases of structure factors from a set of structure factor magnitudes |F(H)|. The
crystal structure is then revealed on the map calculated from (2).

One of the fundamental formulae of direct methods is the Sayre equation (Sayre, 1952), which
describes the relationship among structure factors, including phases and magnitudes:

                                              F(H)  =  (Θ/V) ΣH' F(H')F(H-H')     ,                           (5)

where Θ is an atomic form factor and V the volume of a unit cell. The summation is over the entire
reciprocal space. In theory the Sayre equation is valid only under the following conditions:

i) ρ(r) is everywhere positive;
ii) the crystal consists of discrete atoms which do not overlap each other;
iii) there are only one kind of atoms in the crystal.

In practice conditions i and ii are nearly true for both X-ray and electron diffraction, while the condition
iii could seldom be satisfied. The deviation from condition iii just gives rise to the "squaring effect" which
renders, in the resultant map ρ(r), the heavy atoms much heavier while the light atoms much lighter than
they should be.

The most widely-used formula in direct methods is probably the tangent formula (Karle &
Hauptman, 1956):
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tan ϕ(ΗΗΗΗ) ≈ ΣH' |E(H')E(H-H')|sin{ϕ( H')+ϕ(H-H')}/ΣH' |E(H')E(H-H')|sin{ϕ( H')+ϕ(H-
H')} 

,     (6)

where E(H) is the normalized structure factor, the magnitude of which can be obtained through |F(H)|.
The tangent formula can be regarded as the angular portion of Sayre's equation, however unlike the Sayre
equation, the summation ΣH' in the tangent formula can be composed of a small number of terms and the
validity of the formula is evaluated by a probability distribution given by Cochran (1955):

                                       P(Φ3) = { 1/2πIo(κ)} exp{ΣH' (κ cosΦ3)}      ,                       (7)

where                                                     Φ3 = ϕ(ΗΗΗΗ) − ϕ(H') − ϕ(H-H')     ,

                                              κ = 2σ3/σ2
3/2|E(H)E(H')E(H-H')|     ,

                                             σn = Σj (Zj)n     ,

Zj   is the atomic number of the jth atom in a unit cell and Io is the zero order of a family of modified
Bessel functions, In.

At present systematic techniques of applying the tangent formula and the Sayre equation to solve
crystal structures from X-ray diffraction data have been well established. Important contributions were
made by Woolfson and his colleagues (Germain & Woolfson, 1968; Yao, 1981; Debaerdemaeker, Tate &
Woolfson, 1985, 1988). With the latest techniques of direct methods most crystal structures of moderate
complexity can be solved in a routine way.

3. Direct methods outside traditional field
Direct methods are so successful that their important contribution to science has been recognized

by the award of the Nobel Prize for Chemistry to two pioneers of direct methods, H. Hauptman and J.
Karle. On the other hand direct methods are still limited to the structure analysis of single crystals with
moderate complexity using X-ray diffraction data. New application fields for direct methods remain to be
explored. Recently direct methods are expanding along the following lines:

i) from the structure analysis of single crystals to that of polycrystalline samples;
ii) from ideal three-dimensional periodic structures to aperiodic structures, including

incommensurate modulated structures and quasicrystals;
iii) from X-ray crystallography to electron microscopy;
iv) from small molecules to proteins.

In the following, examples will be given on the last three topics.

3.1 Direct methods for incommensurate modulated structures
A modulated structure can be regarded as the result of applying a  periodic  modulation to a

regular structure. Fig. 1 shows two simplified examples.  The modulation wave in the figure represents the
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fluctuation of atomic occupancy. When it is applied to the background regular structure, the "heights" of
the atoms are modified. A commensurate modulated structure (superstructure) will result (fig. 1a) if the
period  T of the modulation function is commensurate with the period t of the structure, i.e. T/t=n, where n
is an integer. The resulting superstructure now has a true period T and a pseudo period t, respectively
corresponding to a true unit cell and a pseudo unit cell. On the other hand, if T is incommensurate with t
(fig. 1b), i.e. T/t=r, where r is not an integer, we obtain an incommensurate modulated structure, in which
no exact periodicity occurs, although t remains a pseudo period. A modulation function can also represent
a fluctuation in atomic positions and the positional modulation can also be either commensurate or
incommensurate. In practice a modulated structure can simultaneously include different kinds of
occupational and/or positional modulations.

An incommensurate modulated structure produces a three-dimensional diffraction pattern, which
contains satellites round the main reflections. An example of a section of such a three-dimensional
diffraction pattern is shown schematically in fig. 2. The main reflections are consistent with a regular
three-dimensional reciprocal lattice although the satellites do not fit the same lattice. On the other hand,
although the satellites are not commensurate with the main reflections, they have their own periodicity.
Hence, it can be imagined that the three-dimensional diffraction pattern is a projection of a four-
dimensional reciprocal lattice, in which the main and the satellite reflections are all regularly situated at
the  lattice nodes. From the properties of the Fourier transform the incommensurate modulated structure
here considered can be regarded as a three-dimensional "section" of a four-dimensional periodic structure.
The multi-dimensional representation of incommensurate modulated structures, which forms the basis of
structure analysis in multi-dimensional space, was first proposed by de Wolff and further developed by
Janner & Janssen (de Wolff, 1974; Janner & Janssen, 1977; de Wolff, Janssen & Janner, 1981).

Up to the present, studies of incommensurate modulated structures were mostly based on
preliminary assumption of the modulation function. Direct methods have been extended for solving
incommensurate modulated structures in multi-dimensional space. According to Hao, Lui & Fan (1987)
the Sayre equation (5) is also valid for a multi-dimensional periodic structure with the reciprocal vector H
defined in a multi-dimensional space. The right-hand side of equation (5) can be split into three parts:

F(H)  =  (Θ/V) ΣH' Fm(H')Fm(H-H')

+ (2Θ/V) ΣH' Fm(H')Fs(H-H')

                                                + (Θ/V) ΣH' Fs(H')Fs(H-H')     .                                (8)

Here subscript m stands for main reflections while subscript s stands for satellites.  Since the intensities of
satellites are on average much weaker than those of main reflections, the last summation on the right-hand
side of (8) is negligible in comparison with the second, while the last two summations on the right-hand
side of (8) are negligible in comparison with the first. Letting F(H) on the left-hand side of (8) represents
only the structure factor of main reflections we have to first approximation

                                          Fm(H)  ≈  (Θ/V) ΣH' Fm(H')Fm(H-H')     .                       (9)
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On the other hand, if F(H) on the left-hand side of (8) corresponds only to satellites, it follows that

                                          Fs(H)  ≈  (2Θ/V) ΣH' Fm(H')Fs(H-H')     .                      (10)

Notice that in this case the first summation on the right-hand side of (8) has vanished, because any three-
dimensional reciprocal lattice vector corresponding to a main reflection will have zero components in the
extra dimensions so that the sum of two such lattice vectors could never give rise to a lattice vector
corresponding to a satellite. An exception to this can be found only when the average structure itself is a
four- or higher-dimensional periodic structure as in the so-called composite structures, the analysis of
which will be discussed in the lecture given by Prof. Beurskens in this Workshop. Equation (9) indicates
that the phases of main reflections can be derived by a conventional direct method neglecting the
satellites. Equation (10) can be used for the phase extension from the main reflections to the satellites.
This provides  a way to determine directly the modulation functions.

Structure details of the incommensurate modulation of the Pb-doped Bi2Sr2Ca2Cu3Ox high-Tc
superconductor have been revealed for the first time using this method (Mo, Cheng, Fan, Li, Sha, Zheng,
Li & Zhao, 1992). Since single crystals suitable for X-ray diffraction analysis are extremely difficult to
prepare for this compound, electron diffraction instead of X-ray diffraction was used. One dimensional
modulation is found from the electron diffraction pattern. All reflections can be indexed using four-integer
indices. The 0klm electron diffraction pattern were measured yielding intensities for 42 main reflections
and 70 first order satellites. The phases of main reflections were calculated from the known average
structure (Sequeira, Yakhmi, Iyer, Rajagopal & Sastry, 1990), while the phases of satellite reflections
were derived by the phase extension according to (10). A Fourier map was then calculated which is the
four-dimensional potential distribution function projected along the a axis. By cutting this Fourier map
perpendicular to the fourth dimension we obtain the projection of the incommensurate modulated structure
along the a axis in the three-dimensional real space. The result is shown in fig. 3, in which ten unit cells of
the average structure are plotted along the b axis showing how the atoms are modulated from one unit cell
to the other. Both occupational and positional modulations are evident for Bi atoms. The strong
occupational modulation of Bi implies large amount of Bi-vacancies disordered on the planes normal to
the b axis. The same feature is also seen for Ca and Sr atoms. Another prominent feature in fig. 3 is that
oxygen atoms of the Cu(1)-O layer move towards the Ca layers forming a disordered oxygen bridge across
the layers of Cu(2)-Ca-Cu(1)-Ca-Cu(2). In addition, occupational and positional modulations along the b
axis are also found for the disordered oxygen atoms. The disordered arrangement and modulation of
oxygen atoms imply large amount of O-vacancies on the Cu(1)-O plane.

3.2 Direct methods for combining electron diffraction and electron microscopy
Crystalline materials important in science and technology, such as high-Tc superconductors, are

often too small in grain size and too imperfect in periodicity to carry out an X-ray single crystal analysis,
but they are suitable for electron microscopic observation. The electron microscope is the only instrument
which can produce simultaneously for a crystalline sample a micrograph and a diffraction pattern
corresponding to atomic resolution. In principle, either the electron micrograph or the electron diffraction
pattern could lead to a structural image.

Dorset (1991) showed that a direct-method electron diffraction analysis, based on the kinematic
diffraction approximation, can be a powerful tool for crystal structure analysis. However, the phase
problem in electron diffraction analysis is nothing like as easy to solve as it is in X-ray analysis. Electron
diffraction patterns provide only a partial set of three-dimensional reflections within a reciprocal sphere.
This weakens the power of direct methods, since the number of phase relationships will be much
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decreased and some of the strongest relationships might be lost. In addition, the measurement of
diffraction intensities is distorted by dynamical diffraction effects and the available techniques of intensity
measurement do not compete in accuracy with those available for X-rays. This means that there are
considerable difficulties in applying direct-methods to electron diffraction analysis.

High resolution electron microscopy has made great progress in recent years in the study of
crystalline materials (Li, 1990). It still has two major disadvantages:
     i) in most cases a high resolution electron micrograph does not directly reveal the true structure; what
is obtained is a convolution of the structural image with the Fourier transform of a contrast transfer
function. Hence some technique is needed to restore the blurred image.
     ii) the point-to-point resolution of the micrograph is insufficient to resolve individual atoms in most
cases. Hence some procedure is required to enhance the resolution.

The above problems can be solved by combining the information from an electron micrograph
with that from the corresponding electron diffraction pattern. Direct methods play an important role in
such a combination. Details of the technique will be described in the lecture by Prof. Li in this Workshop.
A program is now writing for the electron crystallographic image processing and is hopefully to be
released by the end of this year.

3.3 Direct phasing of one-wavelength anomalous scattering (OAS) data from proteins
Multiple isomorphous replacement is now dominating the structure analysis of proteins with no

structural precedent. It may occur that the derivatives are difficult to prepare, or they are not isomorphous
with the native protein. In this case multi-wavelength anomalous scattering (MAS) can in principle be
used, if there are some suitable heavy atoms in the native protein or its non-isomorphous derivative.
However MAS technique suffers from the difficulty of collecting and scaling data at different wavelengths
accurately. OAS technique does not have this difficulty but it leads to the problem of phase ambiguity.
There were several early proposals to use direct methods to break the phase ambiguity inherent  in the
OAS technique (Fan, 1965; Hazell, 1970; Sikka, 1973; Heinerman, Krabbendam, Kroon & Spek 1978).
The method of Fan (1965) has been extended and tested with experimental protein diffraction  data.
Details of the method are given here. The phase doublet from OAS is expressed as

                                                        ϕH = ϕ''H ± |∆ϕH|     ,                                        (11)
 where ϕ''H is the phase of

F''ano = Σj  i∆f''j exp(i2πΗΗΗΗ....rj) = |F''ano|exp(iϕ''H)
|∆ϕH| is calculated by

                                            |∆ϕH| = | cos−1 {( F+ − F−)/2|F''ano|} |     .

By introducing the concept of best phase, ϕH,best , and figure of merit, mH , used in protein
crystallography into the direct-method approach for dealing with enantiomorphous phase ambiguity (Fan,
Han & Qian, 1984), there is obtained

                                                                   ∆ϕH,best = ϕH,best  − ϕ''H    ,                                   (12)

                                   tan (∆ϕH,best) = 2(P+− 1/2) sin |∆ϕH| /cos ∆ϕH                        (13)
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and

                 mH = exp(−σ2
H/2) {[ 2(P+− 1/2)2 + 1/2] (1 − cos 2∆ϕH) + cos 2∆ϕH} 1/2   ,    (14)

where σ2
H is related to the experimental error and can be calculated from the men square of the "lack of

closure error" (Blow & Crick, 1959). The probability that ∆ϕH is positive, P+ is given by

P+ = (1/2) + (1/2) tanh {  sin |∆ϕH|  ×

          [ΣH' mH' mH-H' κH,H' sin (Φ'3 + ∆ϕH',best + ∆ϕH-H',best) + χsin δH ]}     ,        (15)

where
                                                 Φ'3 = − ϕ''H + ϕ''H' + ϕ''H-H'     ,

                                                        χ = 2|ΕHΕH,ano|/σu     ,

                                                           δH = ϕH,R − ϕ''H     .

In the above expressions, ΕH,ano is the contribution of the anomalous scatterers to the normalized structure

factor ΕH; σu = Σu (Zu)2/σ2 , Zu is the atomic number of the uth atom which belongs to the unknown
part of the structure, and σ2 = Σj (Zj)2 ; ϕH,R is the phase contributed from the real part scattering of the
anomalous scatterers. A procedure for using (12) - (15) is now described. Values of ∆ϕH,best and mH are
calculated for each reflection using (13) and (14), assuming that P+ = 1/2. The  values of ∆ϕH,best and
mH are then substituted into (15) to obtain for each reflection a new P+ , which   will mostly differ from
1/2. Substituting the new values of P+ into (13) and (14) gives an improved set of ∆ϕH,best and mH. Next
ϕH,best is calculated from ∆ϕH,best from (12) and values of ϕH,best and mH are then used with the
observed structure-factor magnitudes to calculate the best Fourier map.

The above procedure has been tested (Fan, Hao, Gu, Qian, Zheng & Ke, 1990) with the
experimental OAS data from the Hg-derivative of the protein aPP (Blundell, Pitts, Tickle, Wood, & Wu,
1981). The sample crystallizes in space group C2 with unit cell dimensions a=34.18, b=32.92 c=28.44Å
and β=105.30o and with one molecule of 36 amino-acid residues in the asymmetric unit. Diffraction data
were collected with CuKα radiation and 2108 independent reflections at 2Å resolution were observed and
used in the test calculation. The resultant direct-method phases led to an interpretable electron density
map, a part of which is shown in fig. 4. The correlation coefficient between the electron density map
phased by the direct method and that calculated from the true phases is 0.70. The mean phase error of the
direct-method phases in comparison with the true phases is 38.4o for the total of 2108 independent
reflections at 2Å resolution. Test with another known protein of moderate size is now undertaking.
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Figure legends

Fig. 1. Occupational modulation of a one-dimensional structure. (a) commensurate modulation;
(b) incommensurate modulation. Top: modulation function with a period equal to T; middle: one-
dimensional structure with atoms shown as thick vertical lines and with a period equal to t; bottom: the
resulting modulated structures.

Fig. 2. Schematic diffraction photograph of an incommensurate modulated structure. The vertical
line segments indicate the projection of lattice lines parallel to the fourth dimension.

Fig. 3. Contour map of the three-dimensional potential distribution function of Pb-doped Bi-2223
phase projected along the a axis. 10 unit cells are plotted along the b axis showing the period of
modulation equal to approximately 8.5 times the length of b.

Fig.4. Portion of the electron-density map for aPP calculated with phases derived from the use of
equations (12) - (15).


