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1.  Notation

V the volume of a unit cell
r real-space positional vector defined within a unit cell
ρ (r) electron density function with r as argument
h reciprocal-lattice vector, which corresponds to the diffraction index hkl
Fh the structure factor with h as argument; the Fourier transform of ρ (r)
Fsq 

h the Fourier transform of ρ2(r)
fj the scattering factor of the jth atom in the unit cell
f sq 

j the scattering factor of the jth ‘squared atom’ in the unit cell
Fh the magnitude of Fh

ϕh the phase of Fh

Φ3 = ϕ − h+ϕ h’+ϕ h − h’ , the three-phase structure invariant
Eh the normalised structure factor corresponding to Fh
Eh the magnitude of Eh

σn = Σj (Zj)n, Zj is the atomic number of the jth atom in the unit cell, n is an integer

2.  Sayre’s equation

The Sayre equation [1] is an exact equation linking structure factors. It holds under the
following conditions:

i)  positivity;
ii)  atomicity;
iii)  equal-atom structure.

Given a crystal structure represented by ρ (r), we can construct a ‘squared structure’
expressed as
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                                                 ρ2(r) = ρ (r) × ρ (r)     .                                      (1)

According to the convolution theorem, the Fourier transform of (1) yields

                                               F F Fh h
h

h h
sq

V
= ∑ −

1
'

'
'      ,                                        (2)

where

                                           Fh = ⋅
=

∑ f ij
j

N

jexp( )2
1

π h r      .                               (3)

Since Fsq 
h is the Fourier transform of ρ2(r), according to (2) the ‘squared structure’ can

be determined through the convolution of structure factors Fh. Now if we can find the
relationship between ρ2(r) and ρ€(r), then the Fsq 

h in (2) can be converted to Fh leading
to an equation linking structure factors. If the first two conditions mentioned above are
satisfied, i.e. we have i) ρ€(r) ≥ 0, ii) the electron densities of different atoms do not
overlap, then ρ2(r) and ρ€(r) will have the same number of maxima (atoms) situated at
the same positions. We can write

                                        Fh
sq

j

sq

j

N

jf i= ⋅
=

∑ exp( )2
1

π h r      .                               (4)

If the third condition is also satisfied, we have F 
h / Fsq 

h = f / f sq  and hence

                                            F F Fh h
h

h h= ∑ −

f

f Vsq '
'

'      .                                      (5)

Equation (5) is Sayre’s equation.
An important outcome of Sayre’s paper, and two other papers published alongside

that of Sayre by Cochran [2] and Zachariasen [3], was the relationship between the signs
of structure factors in centrosymmetric case:

                                                        Sh ∼ Sh’ Sh − h’     ,                                            (6)

where ∼ means ‘probably equals’. This can be seen from (5); if Fh is a large structure
factor then it is more likely than not that a large product on the right hand side will have
the same sign (phase). The probability for (6) to be true was given by Woolfson [4] and
more generally by Cochran and Woolfson [5]
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During the early days of direct methods, the sign relationships were used in various
ways to solve centrosymmetric structures or centrosymmetric projections of non-
centrosymmetric structures [3, 6, 7]. A very successful technique of applying Sayre’s
equation in ab initio phasing is the SAYTAN method, which will be described later in
this paper. On the other hand, Sayre’s equation and its variations have also been
successfully used in phase extension and refinement for a wide variety of structures,
from proteins to aperiodic crystals [8].

It should be noticed that, while the three conditions mentioned above are necessary
for deriving the Sayre equation, they are not satisfied exactly in practice. It is useful to
know what would happen when one or more conditions does not hold. In theory, any
violation of the three conditions would lead to the collapse of equation (5). However
even in this case equation (2) is still valid. Consequently results of applying Sayre’s
equation would tend to ρ2(r) rather than ρ€(r). The problem is: to what extent will ρ2(r)
and ρ€(r) resemble each other? For example, in neutron diffraction the scattering factor
of some elements is negative leading to ‘negative atoms’ in the density function ρ€(r).
When Sayre’s equation is used with neutron diffraction data, the result, approximately
ρ2(r), will differ from ρ€(r) mainly in that the negative atoms are changed to positive
ones. In another case, if the crystal contains heavy atoms together with light atoms, the
map resulting from Sayre’s equation will have heavy atoms heavier and light atoms
lighter than those in ρ€(r). Hence in many cases Sayre’s equation may still be applicable
even when the three conditions are not completely fulfilled.

3.  Cochran’s distribution

The three-phase relationship

                                                ϕ − h + ϕ h’ + ϕ h − h’ ∼ 0     (modulo 2π)     .           (8)

and the probability distribution of

                                               Φ3 = + +− −ϕ ϕ ϕh h' h h'     ,                                   (9)

were given by Cochran [9]

                             [ ] ( )P I( ) ( ) exp cos, ' , 'Φ Φ3 0
1

32=
−

π κ κh h h h     ,                 (10)

where
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                                           κ σ σh h h h h h, '
/

' '= −
−2 3 2

3 2 E E E                                   (11)

for non-equal-atom structures and

                                            κh h h h h h, '
/

' '= −
−2 1 2N E E E                                     (12)

for equal-atom structures.
The derivation of (10) is based on the central limit theorem: Given a set of n

independent random variables, xi , with means < xi > and variances σi
2 , the function

                                                       y a xi
i

n

i=
=
∑

1
                                                   (13)

has a probability distribution that tends, as n becomes large, to a normal (Gaussian)
distribution
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It has been shown by Kitaigorodskii [10] that, taking cos(2πh.rj) as xi and taking Fh as  y
, for a crystal in space group P1 containing more than 10 atoms in the unit cell, the
probability distribution of Fh tends, to a good approximation, to a Gaussian distribution.
Now let the trigonometric factors

                     cos[ ( ) ]cos( )cos[ ( ' ) ]s in sin sin   2 2 2π π π− ⋅ ⋅ − ⋅h r h r h h rj j j'      ,

where cos
sin  means ‘sin’ or ‘cos’, be the independent random variables xi and the product

E-h Eh’ Eh-h’ be the function y. Assuming the probability distribution of both the real and
the imaginary component of y tend to a Gaussian distribution, and assuming the
amplitudes E-h, Eh’ and Eh-h’ are known, we would finally obtain Cochran’s distribution
(10).
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4.  The tangent formula

From equations (9) and (10), if there are more than one pair of known phases, ϕ€h’

and ϕ h − h’ , associated with the same ϕ€h , then the total probability distribution for ϕ€h
will be

                   P P N( ) ( ) exp cos'
'

, '
'

ϕ κh h
h

h h
h

= =






∏ ∑Φ Φ3 3     ,                 (15)

where N is a normalising factor.

Let

                                  α sinβ  = ∑ h’ κ h, h’ sin (ϕ h’ + ϕ h− h’)                           (16)
and

                                 α cosβ  = ∑ h’ κ h, h’ cos (ϕ h’ + ϕ h− h’)                          (17)

(15) becomes

                              [ ]P I( ) ( ) exp[ cos( )]ϕ π α α ϕ βh h= −−2 0
1

    .                 (18)

By maximising P(ϕh) in (18) we have ϕh = β . Then from (16) and (17) we obtain
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with
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   (20)

indicating the reliability of the estimation of ϕh. This is the tangent formula introduced
by Karle and Hauptman [11], which is the most widely used formula in direct methods.
The form of the tangent formula given here differs a little from, but is equivalent to, that
of the original one.

It is easily obtained from Sayre’s equation a formula similar to (19) but with quite
different meaning. By splitting equation (5) into the real and the imaginary parts and by
dividing the imaginary part with the real part, it follows
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Equation (21) may be regarded as the angular portion of Sayre’s equation. It differs
from (19) in that the summation in (21) should include all available h’ terms, while that
in (19) may just include a few or even only one term of h’. Besides, (21) is an exact
equation, while (19) gives the most probable value of ϕh. The tangent formula is much
easier to use for ab initio phasing. A historical breakthrough on the application of direct
methods was made by Karle and Karle [12] when they solved the non-centrosymmetric
crystal structure of L-arginine dihydrate by the symbolic-addition procedure using the
tangent formula. A few years later a systematic procedure to use the tangent formula and
a computer program MULTAN (MULtisolution TANgent-formula method) [13] were
introduced by Woolfson and his colleagues. The development and application of the
MULTAN and related procedures led to the domination of direct methods in solving
small molecular structures.

4.  SAYTAN

The basic idea behind SAYTAN is to use not only the relationship among phases but also
that among amplitudes implied in Sayre’s equation. The philosophy is that a good set of
phases should satisfy a system of Sayre equations.

                                               E E Eh
h

h
h

h h= ∑ −
K
g '

'
'     ,                                    (20)

where gh is the scattering factor for ‘squared’ atoms and K is an overall scaling constant,
which allows for the fact that only structure factors with large magnitude are included
on the right-hand side. The derivation started with the following residual for a system of
Sayre equations:

                                      R g K= − −∑∑ h h h h h
hh

E E E' '
'

2

    .                          (21)

As a condition that R should be a minimum it is necessary that

                                                          
∂
∂ϕ

R
h

= 0    for all h
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and this leads to the Sayre-equation tangent formula [14]

( )ϕh h h h h
h

h h h h h h h h
hh

E E E E E= + + −
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(22)

As is seen the Sayre-equation tangent formula includes both triplet and quartet terms. A
distinctive feature of the Sayre-equation tangent formula is that it can use the
information from Sayre equations for which the values of Eh are small, ideally zero. As
is well known in powder-method crystal-structure analysis, a good structure model
should satisfy the weakest reflections as well as the strongest. The Sayre-equation
tangent formula tends to develop phase sets, which satisfy the smallest magnitudes as
well as the largest. Since it uses extra information SAYTAN is more effective than
MULTAN , either giving a solution in fewer trials or giving a solution where MULTAN
would not.

Reference

1.  Sayre, D. (1952) The squaring method: a new method for phase determination, Acta Cryst. 5, 60-65.
2.  Cochran, W. (1952) A relation between the signs of structure factors, Acta Cryst. 5, 65-67.
3.  Zachariasen, W. H. (1952) A new analytical method for solving complex crystal structures, Acta Cryst.

5, 68-73.
4.  Woolfson, M. M. (1954) The statistical theory of sign relationships, Acta Cryst. 7, 61-64.
5.  Cochran, W. and Woolfson, M. M. (1955) The theory of sign relations between structure factors, Acta

Cryst. 8, 1-12.
6.  Woolfson, M. M. (1957) An efficient process for solving crystal structures by sign relationships, Acta

Cryst. 10, 116-120.
7.  Grant, D. F., Howells, R. G. and Rogers, D. (1957) A method for the systematic application of sign

relations, Acta Cryst. 10, 489-497.
8.  Woolfson, M. M. and Fan, H. F. (1995) Physical and Non-physical Methods of Solving Crystal

Structures, Cambridge University Press, Cambridge, pp. 208-233; 235-238.
9.  Cochran, W. (1955) Relations between the phase of structure factors, Acta Cryst. 8, 473-478.
10.  Kitaigorodskii, A. I. (1957) Theory of structure analysis, Academic Press, USSR, Moscow. (in

Russian)
11.  Karle, J. and Hauptman, H. (1956) A theory of phase determination for the four types of non-

centrosymmetric space groups 1P222, 2P22, 3P12, 3P22, Acta Cryst. 9, 635-651.
12.  Karle, I. L. and Karle, J. (1964) An application of the symbolic addition method to the structure of L-

arginine dihydrate, Acta Cryst. 17, 835-841.
13.  Germain, G. and Woolfson, M. M. (1968) On the application of phase relationships to complex

structures,  Acta Cryst. B24, 91-96.
14.  Debaerdemaeker, T., Tate, C. and Woolfson, M. M. (1988) On the application of phase relationships to

complex structures. XXVI. Developments of the Sayre-equation tangent formula, Acta Cryst. A44, 353-
357.


