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Abstract

The program MIMS (measuring incommensurate modulated
structures) has been written for the determination of structural
parameters of incommensurate one-dimensionally modulated
structures by an automatic search routine on four-dimensional
Fourier maps. Test results show that the program works
accurately and ef®ciently.

1. Introduction

It is well known that incommensurate modulated structures
are more dif®cult to solve than ordinary structures. For the
determination of an incommensurate modulated structure
without using a pre-assumed model, there are three main
problems to solve: (i) phasing the diffraction data, (ii) building
a structure model according to the resultant Fourier map, and
(iii) re®ning structure parameters. The ®rst problem has been
treated successfully by multidimensional direct methods (Hao
et al., 1987; Fan et al., 1993; Fan, 1998). For the third problem, a
number of program packages are available (Petricek et al.,
1991; Yamamoto, 1991; Cheng et al., 1998). The goal of the
present work is the automatic solution of the second problem.
This is important, since manual interpretation of a four-
dimensional Fourier map is time-consuming and prone to
inaccuracies.

2. Description of incommensurate one-dimensionally
modulated structures

For details of the superspace description of incommensurate
structures the reader is referred to papers by de Wolff (1974,
1977), Janner et al. (1983), Yamamoto (1982) and van Smaalen
(1995). In the following only a brief description is given.

Incommensurate one-dimensionally modulated structures
can be regarded as the result of applying a one-dimensional
periodic modulation to a three-dimensional basic structure, the
periodicity of which does not match that of the modulation
wave. The diffraction pattern of an incommensurate modu-
lated structure is characterized by additional satellite re¯ec-
tions, which do not ®t the three-dimensional reciprocal lattice
constructed by main ordinary re¯ections. For one-dimension-
ally modulated structures, the modulation waves are of one
type and have a common wavevector

q � q1a� � q2b� � q3c�; �1�

where a*, b* and c* are vectors de®ning the reciprocal lattice
of the basic structure. Since the modulation is incommensu-
rate, at least one of the components, q1, q2 and q3, should be
irrational. The position vector of a Bragg re¯ection is thus

h � ha� � kb� � lc� �mq; �2�

where h, k, l and m are all integers; m = 0 for main re¯ections,
m 6� 0 for satellites. We can imagine that q is the projection of a
four-dimensional vector onto the three-dimensional physical
space. Therefore we can construct a four-dimensional reci-
procal lattice having basic vectors

b1 � �a�; 0�;
b2 � �b�; 0�;
b3 � �c�; 0�;
b4 � �q; d�;

�3�

where d is a unit vector perpendicular to the three-dimensional
physical space. According to the reciprocal relationship

ai � bj � �ij �i; j � 1; 2; 3; 4�; �4�
the basic vectors of the corresponding four-dimensional direct
lattice should be

a1 � aÿ q1d;

a2 � bÿ q2d;

a3 � cÿ q3d;

a4 � �0; d�:

�5�

From (3), the position vector of a re¯ection in the four-
dimensional reciprocal space becomes

hs � h1b1 � h2b2 � h3b3 � h4b4; �6�
where h1 = h, h2 = k, h3 = l and h4 = m. From (5), the position
vector of a point in a four-dimensional unit cell in direct space
is

x � x1a1 � x2a2 � x3a3 � x4a4; �7�
where x1, x2, x3 and x4 are fractional coordinates. The
diffraction pattern of an incommensurate one-dimensionally
modulated structure corresponds to the projection of a four-
dimensional reciprocal lattice. The incommensurate structure
itself can be obtained by cutting a four-dimensional periodic
structure perpendicular to the vector d. A hypersection in the
four-dimensional direct space perpendicular to the vector d
satis®es

d � �x1a1 � x2a2 � x3a3 � x4a4� � 0: �8�
According to (5) we have

ÿq1x1 ÿ q2x2 ÿ q3x3 � x4 � 0: �9�
De®ning

t � ÿq1x1 ÿ q2x2 ÿ q3x3 � x4; �10�
the four-dimensional periodic structure may also be described
using a, b, c and d as the basic vectors. The position vector in a
four-dimensional unit cell in direct space is thus
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x � xa� yb� zc� td; �11�
where x, y, z and t are fractional coordinates. Values of x, y and
z with respect to the basic vectors a, b and c are respectively
the same as x1, x2 and x3 with respect to basic vectors a1, a2 and
a3. A one-dimensionally incommensurate modulated structure
in three-dimensional physical space is described by the
corresponding four-dimensional periodic structure on the
hypersection at t = 0. Parameters of a modulated atom on the
hypersection at t = 0 can be expressed with respect to their
average values (see Fig. 1). We write

�� � ��� � u���x4�; �12�
or according to equations (1) and (9) we have equivalently

�� � ��� � u��q � �x��; �13�
where � denotes the �th atom in a unit cell of the basic
structure, ��� is the average parameter, which equals L + ���0 for
positional parameters or equals ���0 for occupational/substitu-
tional and displacement parameters, L is a lattice vector of the
basic structure, ���0 is the average parameter in the unit cell with
its origin at L = 0, u is the modulation function with period
equal to unity, �x4 is the fourth coordinate of a point in four-
dimensional space having its ®rst three coordinates respec-
tively equal to the average coordinates �x1, �x2 and �x3, q is the
modulation wavevector, �x� = L + �x�0 is the average position
vector of the �th atom, �x�0 is the average position vector in the
unit cell at L = 0. The modulation function u can be expanded
into a Fourier series

u���x4� �
P1
n�1

�A�
n cos�2�n�x4� � B�

n sin�2�n�x4��: �14�

Hence atomic coordinates can be expressed as a Fourier series
with its zero-order coef®cient equal to the corresponding
average coordinate, i.e.

�� � A�
0 �

P1
n�1

�A�
n cos�2�n�x4� � B�

n sin�2�n�x4��; �15�

where A�
0 = ���.

3. Searching strategy

A modulated atom in four-dimensional space will behave as a
waving string extended in the direction of the fourth axis a4.
Position modulation changes the deviation from average
position along the string, occupation/substitution modulation
causes variation on the integrated density along the string,
while temperature-factor modulation affects mostly the width
variation of the string. By tracing a modulated atom in the
four-dimensional space, all three kinds of modulation can be
determined. However, there are strong interactions between
the effect of occupation/substitution modulation and that of
temperature-factor modulation. Hence, parameters of these
two kinds of modulation can only be obtained semi-quantita-
tively. To start an automatic search, a four-dimensional Fourier
map phased by multidimensional direct methods is calculated
with grid spacing approximately equal to 0.25 AÊ . A fast Fourier
transform (FFT) algorithm is used for the calculation. The
three-dimensional hypersection at a given t value (usually 0 or
1
2) is obtained from the four-dimensional Fourier map. Then a
search is performed to locate atoms on the hyperplane. The
searching algorithm is similar to that used for ordinary struc-
tures. This results in rough positions of intersection between
the hyperplane and atom strings. The positions are then used
as starting points for tracing atom strings one by one. A small
portion of the hypersection is recalculated around a starting
point with a grid spacing of about 0.03 AÊ . A discrete Fourier
transform algorithm is used instead of the FFT. The accurate
intersecting position is obtained by locating the density
maximum along each of the three crystallographic axes. This
gives the ®rst point of the string. Another partial hypersection
is calculated with t displaced from that of the starting point by
0.02. Finding the density peak position along each crystal-
lographic axis gives the second point of the string. The central
curve of the string, the positional modulation function, can be
located accurately by repeating the above step for a series of t
values with intervals of 0.02. The density variation of the string
is then measured accordingly. Finally all the atomic parameters
are expressed as a Fourier series,

�� � C�
0 �

P1
n�1

�C�
n cos�2�nt� � S�n sin�2�nt��; �16�

where C�
0 = ���. This equation differs from equation (15) only in

that the argument used is t rather than �x4. By default, the
maximum order of the Fourier coef®cients is set to 4. In the
case that equation (16) does not ®t the modulation function
very well, the trigonal-wave description (Lam et al., 1995) or
the sawtooth-wave description (Gao et al., 1993) is available as
an alternative.

The program is written in Fortran 77. A number of keywords
are provided for changing some of the control parameters. The
program accepts at most 3000 independent re¯ections,
including mains and satellites, provided that there are no more
than 16 000 re¯ections in the full reciprocal space. This

Fig. 1. The parameter y as a function of its average value �y and the
modulation function u��x4�.
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restriction arises from the need to calculate the discrete
Fourier transform with a small grid spacing of �0.03 AÊ , and
depends on the computing power of a personal computer. This
restriction can be relaxed if a more powerful computer is used.
On the other hand, in order to construct an initial model to be
used in the least-squares re®nement, only the largest E or Fobs

parameters are needed to calculate the Fourier maps. Hence
3000 independent re¯ections are adequate for this purpose.
The program will be available on the World Wide Web in due
course. Readers who wish to use the program without docu-
mentation may contact the corresponding author.

4. Tests and results

4.1. A hypothetical structure

In order to test the measuring accuracy of the program, a
hypothetical incommensurate one-dimensionally modulated
structure was constructed, containing only one atom in the unit
cell with sinusoidal positional modulation. The magnitude of
the modulation was 0.3 AÊ . A set of structure factors were
calculated at 0.7 AÊ resolution, including up to second-order
satellites. A default run of MIMS with the resultant four-
dimensional Fourier map yielded a measured structure model.
The structure-factor magnitudes calculated from this model
led to an R factor of 0.063 against those from the original
structure model. The maximum deviation between the
measured and the original modulation curves was 0.03 AÊ . If
structure factors at 0.3 AÊ resolution with up to sixth-order
satellites were used in the calculation of the four-dimensional
Fourier map, then the resultant R factor dropped to 0.01, while
the maximum deviation between the measured and the
original modulation curves decreased to 0.0015 AÊ . This test
showed that the program MIMS works perfectly well with
theoretical data, provided that the data are at high enough
resolution.

4.2. 
-Na2CO3

This is a one-dimensionally modulated structure with a =
8.904, b = 5.239, c = 6.042 AÊ , � = 
 = 90, � = 101.35�, and the
modulation wavevector q = 0.182a* + 0.318c*. The superspace
group is C2/m (q1 0 q3) 0 s. The modulated structure was
originally solved by van Aalst et al. (1976) using X-ray
diffraction data with a trial-and-error method. The X-ray

diffraction data used in our test were obtained from the
archives of the IUCr as supplementary material for the paper
by van Aalst et al. (1976). Only a subset of observed structure-
factor magnitudes was used in the calculation, which included
300 main re¯ections, 250 ®rst-order satellites and 150 second-
order satellites. The program SAPI (Fan et al., 1991) was used
to derive the phases of the main re¯ections while the program
DIMS (Fu & Fan, 1994) was used for phasing the satellites. A
four-dimensional Fourier map was then calculated. The inter-
pretation of this Fourier map using the program MIMS led to a
complete structure model. Table 1 shows measured Fourier
coef®cients of the sodium atom Na(3) in comparison with the
corresponding re®ned Fourier coef®cients according to van
Aalst et al. (1976) (shown in parentheses).

In practice, a variation is considered to be negligible if it is
less than 0.01 AÊ for positional parameters, or less than 0.1 for
occupational and displacement parameters. Hence, it is evident
from Table 1 that the modulation actually exists only in the y
coordinate. The measured model gives an R factor of 0.189 for
all re¯ections. R factors after least-squares re®nement are
listed in Table 2 in comparison with those from van Aalst et al.
(1976).

It is apparent that the R factors resulting from our re®ne-
ment are smaller than those of van Aalst et al. (1976). The
reason may be that only 700 strong re¯ections were involved in
our re®nement, while 2668 re¯ections were used by Aalst et al..
This test shows that MIMS works very well with X-ray
diffraction data.

4.3. Pb-doped Bi-2223 (Bi2Sr2Ca2Cu3O10) superconductor

The symmetry of this sample belongs to the superspace
group B bmb (0 q2 0), with the three-dimensional unit cell a =
5.49, b = 5.41, c = 37.1 AÊ , � = � = 
 = 90� and the modulation
vector q = 0.117b*. The modulated structure has been studied
by Mo et al. (1992) with two-dimensional electron diffraction
data using the multi-dimensional direct method. The present
test started with a set of direct-method phased (0klm) electron
diffraction data. A Fourier map was calculated, which is the
four-dimensional potential distribution projected down the a
axis. The interpretation of this map using the program MIMS
led to a projected structure model containing all the metal
atoms and some of the non-overlapping oxygen atoms. Least-
squares re®nement led easily from this model to the ®nal result
of Mo et al. (1992). Table 3 shows Fourier coef®cients of the Bi

Table 1. Fourier coef®cients of the Na(3) atom in 
-Na2CO3

x, y and z are positional parameters in fractional coordinates. p is the occupational parameter. wii are proportional to the displacement parameters
Bii. Ai and Bi are the ith-order Fourier coef®cients in equation (15) with �x4 as argument. Corresponding re®ned Fourier coef®cients according to
van Aalst et al. (1976) are shown in parentheses.

x y z p w11 w22 w33

A0 0.1694 0.5000 0.7491 0.9573 0.403 0.492 0.436
(0.1706) (0.5000) (0.7478)

A1 0.0000 0.0558 0.0000 0.0000 0.000 0.000 0.000
(0.0687)

B1 0.0000 ÿ0.0032 0.0000 0.0000 0.000 0.000 0.000
(ÿ0.0057)

A2 ÿ0.0003 0.0000 ÿ0.0009 0.0186 0.013 ÿ0.028 ÿ0.014
B2 0.0005 0.0000 0.0003 0.0025 0.003 ÿ0.002 0.007
A3 0.0000 0.0039 0.0000 0.0000 0.000 0.000 0.000
B3 0.0000 ÿ0.0011 0.0000 0.0000 0.000 0.000 0.000
A4 0.0000 0.0000 0.0000 0.0254 0.009 ÿ0.066 0.016
B4 0.0000 0.0000 ÿ0.0004 ÿ0.0080 ÿ0.003 0.002 ÿ0.004
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atom obtained by the program MIMS in comparison with those
from the ®nal result of Mo et al.

This test shows that even with inaccurate electron diffrac-
tion data, MIMS still gives reliable results, which are good
enough to serve as a starting point for least-squares re®ne-
ment.

This project is supported by the National Natural Science
Foundation of China. The authors would like to thank the
referees whose comments improved this paper. The authors
would like to thank also Dr Jiang Hua for helpful discussions.
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Table 3. Fourier coef®cients of the Bi atom in the Pb-doped Bi-2223 superconductor

Ci and Si are the ith-order Fourier coef®cients in equation (16) with t as argument. Other symbols have the same meaning as in Table 1.

Fourier coef®cients from the direct-method phased Fourier map measured using MIMS
y z p w22 w33

C0 ÿ0.0001 0.0445 0.517 0.732 1.050
C1 ÿ0.0001 0.0081 ÿ0.470 0.069 0.139
S1 0.0049 0.0007 ÿ0.001 ÿ0.009 ÿ0.068
C2 0.0000 0.0071 0.023 ÿ0.096 ÿ0.258
S2 0.0024 0.0010 ÿ0.002 ÿ0.013 ÿ0.093

Fourier coef®cients from the ®nal results of Mo et al. (1992)
y z p Biso

C0 0 0.0528 0.648 1.0
C1 0 0.0076 ÿ0.534 0.0
S1 0 0.0000 0.000 0.0
C2 0 0.0012 0.118 0.0
S2 0 0.0000 0.000 0.0

Table 2. R factors for the diffraction data of 
-Na2CO3 after least-squares re®nement

All re¯ections Main re¯ections First-order satellites Second-order satellites

Result of least-squares re®nement based on
the model derived by MIMS

0.05 0.048 0.045 0.080

Result of Aalst et al. (1976) 0.075 0.061 0.064 0.197
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