
1

Using MK (DOS) and
MK32 (Win32)

Introduction
MK and MK32 (‘MK’) takes a file of dependencies (a 'makefile') and decides what
commands have to be executed to bring the files up to date. These commands are
either executed directly from MK or written to the standard output without executing
them.

If no makefile is specified with a -f option, MK reads a file named `makefile', if it
exists. If no target is specified on the command line, MK uses the first target defined
in the first makefile.

OPTIONS
-f makefile

Use the description file `makefile'. A - as the makefile argument denotes the
standard input.

-d Display the reasons why MK chooses to rebuild a target. All dependencies which
are newer are displayed

-dd Display the dependency checks in more detail. Dependencies which are older
are displayed, as well as newer.

-D Display the text of the makefiles as read in.

2

-DD Display the text of the makefiles and ‘default.mk’.

-e Let environment variables override macro definitions from makefiles. Normally,
makefile macros override environment variables. Command line macro definitions
always override both environment variables and makefile macros definitions.

-i Ignore error codes returned by commands. This is equivalent to the special target
.IGNORE:.

-n No execution mode. Print commands, but do not execute them. Even lines
beginning with an @ are printed. However, if a command line is an invocation of MK,
that line is always executed.

-r Do not read in the default file ‘default.mk’.

-s Silent mode. Do not print command lines before executing them. This is
equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than performing the rules to
reconstruct them.

 macro=value

Macro definition. This definition remains fixed for the MK invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate MK’s but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

USAGE

Makefiles
The first makefile read is ‘default.mk’, which can be located anywhere along
the PATH. It typically contains predefined macros and implicit rules.

The default name of the makefile is ‘makefile’ in the currentdirectory. An
alternate makefile can be specified using one or more ’-f’ options on the

Using MK

3

command line. Multiple ’-f’s act as the concatenation of all the makefiles in a
left-to-right order.

The makefile(s) may contain a mixture of comment lines, macrodefinitions,
include lines, and target lines. Lines may be continued across input lines by
escaping the NEWLINE with a backslash (\).

Anything after a "#" is considered to be a comment, and is strippedfrom the
line. Completely blank lines are ignored.

An include line is used to include the text of another makefile. It consists of
the word "include" left justified, followed by spaces, and followed by the name
of the file that is to be included at this line. Include files may be nested.

Macros
Macros have the form ‘WORD = text and more text’. The WORD need not be
uppercase, but this is an accepted standard. Later lines which contain
$(WORD) or ${WORD} will have this replaced by ‘ text and more text’. If the
macro name is a single character, the parentheses are optional. Note that the
expansion is done recursively, so the body of a macro may contain other
macro invocations.

e.g. FLINTSTONES = wilma and fred

RUBBLES = barney and betty

BEDROCK = $(FLINTSTONES) and $(RUBBLES)

‘$(BEDROCK)’ becomes ‘ wilma and fred and barney and betty’

Also note that whitespace around the equal sign is not relevant when defining
a macro. The following four macro definitions are all equivalent:

MACRO = body

MACRO= body

MACRO =body

MACRO=body

Macros may be added to by using the ‘+=’ notation. Thus

FLINTSTONES += pebbles and dino

4

would be (given the examples above) the same as

FLINTSTONES = wilma and fred and pebbles and dino

Special Macros

MAKE

This normally has the value "make". Any line which invokes MK temporarily
overrides the -n option, just for the duration of the one line. This allows nested
invocations of MK to be tested with the -n option.

MAKEFLAGS

This macro has the set of options provided to MK as its value. If this is set as
an environment variable, the set of options is processed before any command
line options. This macro may be explicitly passed to nested MAKEs, but it is
also available to these invocations as an environment variable.

SUFFIXES

This contains the default list of suffixes supplied to the special target
.SUFFIXES:. It is not sufficient to simply change this macro in order to change
the .SUFFIXES: list. That target must be specified in your makefile.

There are several dynamically maintained macros that are useful as
abbreviations within rules. It is best not to define them explicitly.

 $* The basename of the current target.

 $< The name of the current dependency file.

 $@ The name of the current target.

The $< and $* macros are normally used for implicit rules. They may be
unreliable when used within explicit target command lines.

Targets
A target entry in the makefile has the following format:

target ... : [dependency ...]

[rule]

Using MK

5

...

Any line which does not have leading whitespace (other than macro definitions)
is a ‘ target’ line. Target lines consist of one or more filenames (or macros
which expand into same) called targets, followed by a semi-colon (:). The ’:’ is
followed by a list of dependent files.

Special allowance is made on MSDOS for the colons which are needed to
specify files on other drives, so for example, the following will work as
intended:

c:foo.bar : a:fee.ber

If a target is named in more than one target line, the dependencies and rules
are added to form the target’s complete dependency list and rule list.

The dependents are ones from which a target is constructed. They in turn
may be targets of other dependents. In general, for a particular target file,
each of its dependent files is ‘made’, to make sure that each is up to date with
respect to it’s dependents.

The modification time of the target is compared to the modification times of
each dependent file. If the target is older, one or more of the dependents have
changed, so the target must be constructed. Of course, this checking is done
recursively, so that all dependents of dependents of dependents of ... are up
to date.

To reconstruct a target, MK expands macros, strips off initial whitespace, and
either executes the rules directly, or passes each to a shell or
COMMAND.COM for execution.

For target lines, macros are expanded on input. All other lines have macro
expansion delayed until absolutely required.

Special Targets

.DEFAULT:

The rule for this target is used to process a target when there is no other entry for it, and
no implicit rule for building it. MK ignores all dependencies for this target.

.DONE:

This target and its dependencies are processed after all other targets are built.

.IGNORE:

Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying -i on the command line.

6

.INIT:

This target and its dependencies are processed before any other targets are processed.

.SILENT:

Commands are not echoed before executing them. Encountering this in a makefile is the
same as specifying -s on the command line.

.SUFFIXES:

The suffixes list for selecting implicit rules. Specifying this target with dependents adds
these to the end of the suffixes list. Specifying it with no dependents clears the list. In
order to add your own dependents to the head of the list, you could enter:

.SUFFIXES:

.SUFFIXES: .abc $(SUFFIXES)

Rules
A line in a makefile that starts with a TAB or SPACE is a shell line or rule. This
line is associated with the most recently preceding dependency line. A
sequence of these may be associated with a single dependency line. When a
target is out of date with respect to a dependent, the sequence of commands
is executed. Shell lines may have any combination of the following characters
to the left of the command:

@ will not echo the command line.

- MK will ignore the exit code of the command, i.e. the
ERRORLEVEL of MSDOS. Without this, MK terminates when a
nonzero exit code is returned.

+ MK will use COMMAND.COM to execute the command.

If the ’+’ is not attached to a shell line, but the command is a DOS command or
if redirection is used (<, |, >), the shell line is passed to COMMAND.COM
anyway.

Implicit Rules
Implicit rules are intimately tied to the .SUFFIXES: special target. Each entry
in the .SUFFIXES defines an extension to a filename which may be used to
build another file. The implicit rules then define how to actually build one file
from another. These files are related, in that they must share a common
basename, but have different extensions.

If a file that is being made does not have an explicit target line, an implicit rule
is looked for. Each entry in the .SUFFIXES: list is combined with the extension

Using MK

7

of the target, to get the name of an implicit target. If this target exists, it gives
the rules used to transform a file with the dependent extension to the target
file. Any dependents of the implicit target are ignored. In the following
example, the .SUFFIXES: list is .c .y .l, and the target file is fred.o which does
not have a target line. An implicit rule target ‘ .c.o’ is constructed and searched
for. If it does not exist, the next suffix is tried. If the implicit rule target does
exist, MK looks for a file ‘ fred.c’. If this file does not exist, the next extension is
tried. If ‘ fred.c’ does exist, then the associated rules are executed to create
fred.o from fred.c, presumably invoking the C compiler.

If the next extension must be tried, MK reiterates the above with target ‘ .y.o’
and a file named ‘fred.y’, and potentially with ‘.l.o’ and ‘fred.l’.

EXAMPLES
This makefile says that pgm.exe depends on two files a.obj and b.obj, and that they
in turn depend on their corresponding source files (a.c and b.c) along with the
common file incl.h.

pgm.exe: a.obj b.obj

$(CC) a.obj b.obj -o $@

a.obj: incl.h a.c

$(CC) -c a.c

b.obj: incl.h b.c

$(CC) -c b.c

The following makefile uses implicit rules to express the same dependencies.

pgm.exe: a.obj b.obj

$(CC) a.o b.o -o $@

a.obj b.obj: incl.h

FILES

8

makefile Current version(s) of make description file.

default.mk Default file for user-defined targets, macros, and implicit rules.

DIAGNOSTICS

MK returns an exit status of 1 when it halts as a result of an error. Otherwise it
returns an exit status of 0.

Badly formed macro

A macro definition has been encountered which has incorrect syntax. Most likely, the
name is missing.

cannot open file

The makefile indicated in an include directive was not found or was not accessible.

Don’t know how to make target

There is no makefile entry for target, none of MK’s implicit rules apply, and there is no
.DEFAULT: rule.

Improper Macro.

An error has occurred during macro expansion. The most likely error is a missing
closing bracket.

rules must be after target

A makefile syntax error, where a line beginning with a SPACE or TAB has been
encountered before a target line.

too many options

MK has run out of allocated space while processing command line options or a target list.

