Structural and Magnetic Characterisation of Bi₂Sr_{1.4}La_{0.6}Nb₂MnO₁₂.

E.E. McCabe and C. Greaves

School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK

A new Aurivillius phase (generic formula $M_2A_{n-1}B_nO_{3n+3}$) has been synthesized with n=3 and containing manganese, Bi₂Sr_{1.4}La_{0.6}Nb₂MnO₁₂. The structure has been investigated by X-ray and neutron powder diffraction and found to be tetragonal (*I4/mmm*) at temperatures down to 2K, with a = 3.89970(7) Å, c = 32.8073(9) Å at 2K. There is significant cation disorder between Bi³⁺ (predominantly on the *M* sites) and Sr²⁺ and La³⁺ which prefer the *A* sites: 19(2)% of Bi³⁺ occupy the *A* sites. This disorder, leading to occupancy of *M* sites by Sr²⁺, is thought to relieve strain due to size-mismatch between the fluorite-like and perovskite-like blocks. A high level of order exists between Mn and Nb on the *B* sites, with Mn located predominantly (76.1(6)%) in the central *B* site whilst Nb preferentially occupies the lower symmetry, outer *B* site, where it undergoes an out-of-centre displacement towards the fluorite-like blocks. Magnetic measurements indicate that this material displays spin-glass behaviour on cooling. Synthesis of the Mn⁴⁺ analogue Bi₂Sr₂Nb₂MnO₁₂ was unsuccessful, possibly due to the small size of the Mn⁴⁺ cation.