The Multiple-Detector System for the powder diffractometer at beamline B2: The modular system of the analyser units

W.-H. Kaps ${ }^{1}$, H.Ehrenberg ${ }^{2}$, J.lhringer', M.Knapp ${ }^{2}$, T.Lonkai', W.Prandl ${ }^{1}$, M.Schilling ${ }^{1}$, T.Wroblewski ${ }^{3}$
${ }^{1}$ Institut für Kristallographie, Universität Tübingen,
Charlottenstr.33, D-72070 Tübingen www.uni-tuebingen.de/uni/pki
${ }^{2}$ Inst. f. Materialwissenschaften, Technische Universität Darmstadt, Petersenstr. 23, D-64287 Darmstadt
${ }^{3}$ HASYLAB / DESY / Hamburg,
Notkestr. 85, D-22607 Hamburg

- Introduction

Synchrotron radiation sources have become indispensable for high resolution powder diffraction experiments and the number of researchers using synchrotron radiation facilities is increasing staedily. The normal setting at the beamline B2 in HASYLAB is a single detector with analyser crystal or soller slits. To increase the efficiency of the measurements we have designed and manufactured the multiple-detector system with four analyser units and four scintillation counters. The four analyser diffractometers are based on the Cox [1] parallel beam geometry. Using the small divergence of the incident beam the Bragg reflection angles are measured with highest angular resolution and independent of the sample position. The modular system of these analyser units consists in their exchangeable crystal analysers. The user can chose between two settings: four flat $\mathrm{Si}(111)$ crystal analysers (Fig. 1-3) or four $\mathrm{Ge}(111)$ channel-cut crystal analysers (Fig. 4-6). Using the multipledetector system with the vacuum chamber the channel-cut crystal analysers enable measurements up to a wavelength of $2.5 \AA$

\square Experimental Design	
Flat Si(111) crystal analyser unit	
	Fig.1: The four flat Si(111) crystal analysers are designed for a wavelength range from $0.5 \AA$ to $1.7 \AA$. The dimensions of the crystals are 75 mm in length, 25 mm high and 6 mm thick. Adjustable lead shields eliminated cross talk between the entrance and the exit of the analyser at short wavelengths. Outside the analyser shielding house an additional lead shield covers the entrance opening. In front of it a beam.

$\mathrm{Ge}(111)$ channel-cut crystal analyser unit

Results

Fig.7: Variations of FWHM of LaB, with 2θ for data sets obtained using four detectors flat specimen, LaB。 NIST 660, RT, wavelength $1.20672 \hat{A}$, fit is done with CMPR).

Fig.9: Variations of cts with distance between adjustable lead shield and crystal surface. The primary beam $(\lambda=1.668 \AA)$ is reflected by the Si(111) crystal analyser and collected with detector 1 .

- Acknowledgement

We acknowledge financial support by the BMBF (05SM8VTA3). The authors thank Gerda-Ingilt von Appen and Thomas Wroblewski of HASYLABHamburg for their aid and for the preparation of the analyser crystals.

Fig.11: Variations of FWHM of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with 2θ for data sets obtained using four detectors flat specimen, $\mathrm{Al}_{2} \mathrm{O}$ NIST 1976, RT, wavelength $1.2 \AA$, fit is done with
CMPR). CMPR)

Fig.13: Powder diffraction pattern of CeO_{2} woollected using the multiple-detector system (capillary $1 \mathrm{~mm}, \mathrm{CeO}$ NIST 674a, RT, wavelength $2.2 \AA$, vacuum chamber).

Fig.12: Variations of FWHM of CeO_{2} with 2θ for data sets obtained using four detectors (capillary $1 \mathrm{~mm}, \mathrm{CeO}_{2}$ NIST 674a, RT, wavelength $2.2 \AA$, vacuum chamber, fit is done with CMPR).

Fig.14: Variations of FWHM of Si with 2θ for data sets obtained using four detectors fflat specimen, RT, wavelength $1.2 \hat{A}$, fit is done with CMPR).

Reference

208:573-578, 1983

