Powder Inde xing of Difficult Cells using the Indexing Options within Topas

ACA, Orlando, May 28, 2005

Thanks to Alen Coefto and Arnt Rern for writing and fostering Topas, and for endless help in using it.
fttp://powder.physics.sunys b.edu pstephens@sunysb.edu

$\mathcal{T H E O R V} O \mathcal{F} \mathcal{P O W D E R} \mathcal{D I} \mathcal{F F R A C T I O \mathcal { N }}$

(series of elementary recipes)

itatus Itris
$I_{h k l} \sim\left|\sum f_{j} e^{2 \pi i(h k l) \cdot(x y z)} j\right|^{2}$
$\mathcal{P O} \mathcal{W} \mathcal{D E R}$ PEAKPOSITIONS

$\mathcal{P H} \mathscr{S}$ ICALS $\mathcal{A M P L E}$
$\mathcal{A F F E C T S}$ LINXESHAPES
$S \mathcal{A C E} G \mathcal{G R O} \mathcal{Z}$

1. Start with the best data you canget (but no better).
2. Get a list of accurate diffraction peak positions.
3. Figure out a lattice that explains the peaks.
4. Guess the space group (systematic absences, \# molecules).
5. Search for the best place to put the molecule(s), best conformation of the molecule, best agreement data vs.model.
6. Refine, refine, refine, refine, refine, ...
\mathcal{A} t any stage, you can be forced to jump back to any stage.

Indexing: The Problem
A crystal is defined by three translation vectors, a, b, and c, which produce a reciprocal lattice a^{*}, b^{*}, and c^{*}.
Each possible reflection (hel) is associated with a reciprocal lattice vector

$$
Q=\kappa \mathfrak{a} a^{*}+\kappa b^{*}+\mathcal{L} c^{*}
$$

such that the lattice planes which cause that reflection are separated by a distance $d=1 /|Q|$.
In a powder experiment, one only measures the magnitude of Q, so the $3 \mathcal{D}$ reciprocallatice gets compressed into one dimension.
One can shuffle the equations around to a form that is more convenient,

$$
1 / d^{2}=\mathcal{A} \mathscr{K}^{2}+\mathcal{B} \mathcal{K}^{2}+\mathcal{C} \mathscr{L}^{2}+\mathcal{D K} L+E \notin \mathscr{L}+\mathcal{F} K
$$

So the problem of indexing a powder diffraction pattern becomes:

Given a list of d spacings, find a set of numbers $\{\mathcal{A}, \mathcal{B}, \ldots, \mathcal{F}\}$ so that you can assign (fKC) to each d-spacing in the equation above...
(in the presence of experimentalerror, perfiaps with some rogue extrad-spacings)

There is a pretty good collection of public domain programs for that purpose: $\mathcal{T R E} O \mathcal{R}, I \mathcal{T} O, \mathcal{D I C V O} \mathcal{L}$, Crysfire suite.

This is a data-drivenenterprise, and that means that your diffractometer has to be well aligned, errors due to sample displacement, transparency have to be controlled.

Bragg-Brentano

Focus diverging beam. Moderate
resolution, sensitive to sample
displacement, transparency

I m illustrating with synchrotron data, which is not a particularly rigorous test of indexing algorithms.

Accurate peak positions require fitting model linestrape to observed data. (Here using Topas) (Data from $\mathfrak{N S L S}$ X3B1)

\mathcal{N} ote shifts due to axial

$1^{\text {st }}$ Example. Amyloid analog from lab of \mathcal{D}. Eisenberg, UCLA. (six peptides, Cd, unknown amount of water)

First tried with IITO. Serious dominant zone problem.
The first 15 observed peaks are fit $6 y$ a single zone $\left(2 \mathcal{D}\right.$ slice of reciprocalspace) : $a=23.413 \mathfrak{A}, c=21.190 \mathfrak{A}, \beta=103.86^{\circ}$

Is it monoclinic with $6=4.707 \mathfrak{A}$? $\mathcal{N} o$.

Is the peak at $d=4.707$ A? the (-111)?
Apparently so.

$$
\begin{aligned}
& a=23.413 \mathscr{A} \\
& 6=4.889 \mathscr{A} \\
& c=21.190 \mathscr{A} \\
& \beta=103.86^{\circ} \\
& \mathcal{P} 2_{1} \text { ? } \\
& \text { beta-sheet }
\end{aligned}
$$

Some montfis later, at a conference I bumped into Arnt Kern and FrankS towasser, who popped my diffraction lines into Topas.

It decisively spit out the answer in a few seconds!

2nd example. Small molecule from Sara Wishkerman, BGZ Israel. One form known from single crystal, 2nd polymorph only powder.

Index everything up to fere with a single zone,

But attempts to find the third axis by fand failed.
(This is the last time I ll bother to index anything without Topas.) Without he sitation, Topas spits out space group C2/c $a=62.424 \mathfrak{A}, 6=3.849 \mathfrak{A}, c=14.180 \mathfrak{A}, \beta=104.40^{\circ}$

4-methoxy 3-nitro benzaldefyde Form II

4-metfoxy 3-nitro benzaldefyde Form II

seed index_lam 1.149854 Bravais_Triclinic_sg s load index_th2 $\{$ 1.129713 2.259535 3.389577 4.51994944 5.6507616 6.782125 7.91415071 9.04695034 10.1806364 11.3153229 $(51$
21.3459
21.4153
21.5917301
$\}$

\mathcal{N} o such thing as c-centered triclinic, so aquickadjustment gives ->

Reduce to primitive triclinic

$$
\begin{aligned}
& a=4.2225 \mathfrak{A}, b=4.7725 \mathfrak{A}, c=58.547 \mathfrak{A} \\
& a=91.707^{\circ}, \beta=85.527^{\circ}, ?=106.344^{\circ}
\end{aligned}
$$

cf. V. Vand et al. (1949), using a Frevel focusing camera
Table 4. Silver soaps : parameters of the unit cell at $20^{\circ} \mathrm{C}$.

Soap	Silver caproate	Silver caprylate	Silver caprate	Silver laurate	Silver myristate	Silver palmitate	Silver stearate
A^{*}	$0 \cdot 2213$	$0 \cdot 2200$	$0 \cdot 2193$	$0 \cdot 2198$	$0 \cdot 2189$	0.2192	0.2196
B^{*}	$0 \cdot 2528$	$0 \cdot 2493$	$0 \cdot 2502$	$0 \cdot 2496$	$0 \cdot 2489$	$0 \cdot 2486$	$0 \cdot 2502$
c^{*}	0.05056	$0 \cdot 04078$	0.03396	$0 \cdot 02920$	0.02562	$0 \cdot 02277$	$0 \cdot 02054$
α^{*}	$80^{\circ} 16^{\prime}$	$78^{\circ} 42^{\prime}$	$77^{\circ} 53^{\prime}$	$77^{\circ} 1^{\prime}$	$76^{\circ} 32^{\prime}$	$76^{\circ} 23^{\prime}$	$76^{\circ} 1^{\prime}$
β^{*}	$81^{\circ} 11^{\prime}$	$84^{\circ} 11^{\prime}$	$85^{\circ} 22^{\prime}$	$86^{\circ} 35^{\prime}$	$87^{\circ} 39^{\prime}$	$88^{\circ} 58^{\prime}$	$89^{\circ} 28^{\prime}$
γ (mean)	$80^{\circ} 4^{\prime}$	$79^{\circ} 38^{\prime}$	$78^{\circ} 57^{\prime}$	$77^{\circ} 53^{\prime}$	$78^{\circ} 23^{\prime}$	$77^{\circ} 3^{\prime}$	$76^{\circ} 1^{\prime}$
a (A.)	$4 \cdot 588$	$4 \cdot 621$	$4 \cdot 646$	$4 \cdot 653$	$4 \cdot 663$	$4 \cdot 682$	$4 \cdot 693$
b (A.)	$4 \cdot 016$	$4 \cdot 078$	$4 \cdot 072$	$4 \cdot 097$	$4 \cdot 102$	$4 \cdot 128$	$4 \cdot 120$
c (A.)	20.41	25.24	$30 \cdot 31$	$35 \cdot 33$	40:30	$45 \cdot 32$	50.35
α	$101^{\circ} 12^{\prime}$	$102^{\circ} 23^{\prime}$	$103^{\circ} 9^{\prime}$	$103^{\circ} 51^{\prime}$	$104^{\circ} 9^{\prime}$	$104^{\circ} 13^{\prime}$	$104^{\circ} 35^{\prime}$
β	$102^{\circ} 28^{\prime}$	$97^{\circ} 48^{\prime}$	$96^{\circ} 57^{\prime}$	$95^{\circ} 59^{\prime}$	$95^{\circ} 3^{\prime}$	$94^{\circ} 7^{\prime}$	$93^{\circ} 59^{\prime}$

Structure solved with PSSP.
I m not ready to discuss it in detail.

等

Conclusions:

1) Get the best data you can.
2) Use the best software you can.
