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Abstract

Anisotropic line-shape broadening (peak width which is
not a smooth function of d-spacing) is frequently
observed in powder diffraction patterns, and can be a
source of considerable dif®culty for whole-pattern ®tting
or Rietveld analysis. A model of the multi-dimensional
distribution of lattice metrics within a powder sample is
developed, leading naturally to a few parameters which
can be varied to achieve optimal line-shape ®ts.
Conditions on these parameters are derived for all
crystal systems, and the method is illustrated with two
examples: sodium p-hydroxybenzoate and rubidium
fulleride.

1. Introduction

The development of high-resolution powder diffraction,
especially at synchrotron radiation and pulsed neutron
sources, both allows and requires an accurate descrip-
tion of the diffraction line shape. The original Rietveld
(1969) formulation and many of its successors (e.g.
Thompson, Cox & Hastings, 1987) treat the diffraction
line width as a smooth function of d-spacing or diffrac-
tion angle 2�, whereas, for many samples of interest,
peaks nearby in 2� have vastly different widths. We
consider here the case of a distribution of strain, in
which the diffraction peak width increases in proportion
to the diffraction order. Diffraction widths which are not
a smooth function of d might also arise from anisotropic
sample size broadening or from a particular pattern of
defects (e.g. stacking faults), but such cases are not
covered in the present work. Readers interested in the
approaches which have been used to treat anisotropic
strain (and size) broadening are referred to the review
by Le Bail (1992).

The simplest case of strain broadening is isotropic or
uniform strain, which, for a ®xed-wavelength diffraction
experiment, leads to a diffraction-peak full width at half-
maximum (FWHM) in 2� proportional to tan �, i.e.
ÿ2� � X tan �. In many cases, this does not provide an
adequate description of the systematic variation of line
shape. A Williamson±Hall plot (scatter plot of ÿ2�= cos �
versus sin �) is helpful in distinguishing the cause of
anisotropic broadening of diffraction peaks.

One of the empirical approaches to anisotropic strain
is found to be useful if there is one particular direction
of maximum strain within the crystal, so that one may
take ÿ2� � �X � Xe cos �� tan �, where � is the angle
between the diffraction peak under consideration and
the strain axis. This provides an improved ®t in certain
cases, but is clearly inadequate for many applications.
The method has been generalized by several authors to a
strain distribution which broadens peaks as an ellipsoid
in reciprocal space similar to the formalism used for
anisotropic temperature factors. While the details differ
among these treatments, they share the common feature
that the width of the diffraction peak is expressed in
terms of the six components of a symmetric tensor of the
Miller indices. For example, this expansion has been
applied to the parameters U, V and W of Caglioti et al.
(1958) by Le Bail & Jouanneaux (1997), such that

Uhkl � d2
hkl�A11h2 � � � �A23kl�

and likewise for V and W, and to the width of the
neutron time-of-¯ight peak by David & Jorgensen
(1995),

ÿTOF � d2
hkl�A11h2 � � � �A23kl�1=2:

as well as by Von Dreele & Line (1997),

ÿTOF � d3
hkl�A11h2 � � � �A23kl�:

These methods have been successful in producing
improved line-shape ®ts, even though no theoretical
justi®cation or microscopic model has been given.

A different approach, equally empirical, has been
developed by Cox (1994), originally for the cubic crystal
system, and subsequently generalized. (The ellipsoidal
broadening model cannot be applied to cubic crystals
because the only ellipsoid with cubic symmetry is a
sphere.) Cox has developed a formalism in which the
width is separated into the product of a 2� term and a
function of the direction of the diffraction peak relative
to the lattice, Q̂, e.g. ÿ2� � f �2��g�Q̂�. This may be cast
in a useful form for line-shape ®tting if g�Q̂� can be
described with a limited number of parameters, e.g.
spherical harmonics adapted to the crystal symmetry.
Cox and others have used this approach to obtain a
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signi®cant improvement in the quality of ®ts for cubic
K3C60 and Rb3C60 (Cox, 1994; Fischer et al., 1995).

A completely different viewpoint is to consider the
distribution of lattice metric parameters within a sample.
Each crystallite is regarded as having its own lattice
parameters, with a multi-dimensional distribution
throughout the powder sample. The width of each
re¯ection can be expressed in terms of moments of this
distribution, which leads naturally to parameters that
can be varied to achieve optimal line-shape ®ts. This
approach has been described previously (Thompson,
Reilly & Hastings, 1987; RodrõÂguez-Carvajal et al., 1991;
RodrõÂguez-Carvajal, 1997), but there are certain de®-
ciencies in the published work that must be remedied in
order for it to be generally applicable. Speci®cally, it has
been restricted to the Gaussian component of the line
shape and the formulations do not obey the lattice
symmetry (Thompson, Reilly & Hastings, 1987), or are
not as general as required (RodrõÂguez-Carvajal, 1997).
This paper presents a model of anisotropic peak
broadening through correlations between metric para-
meters, compares the model with previous work, and
illustrates it with two examples.

2. Model of anisotropic broadening

The spacing d between lattice planes for any given
re¯ection de®ned by the Miller indices hkl is given by

1=d2 � Mhkl � Ah2 � Bk2 � Cl2 �Dkl � Ehl � Fhk

�1�
where fA; . . . ;Fg are metric parameters of the reci-
procal lattice. We consider strain broadening as a
manifestation of the distribution of the parameters, so
that each individual grain is imagined to have its own set
of fA; . . . ;Fg, differing from fhAi; . . . ; hFig. Note that
the local values of fA; . . . ;Fg need not respect the
symmetry of the sample as a whole. For example, in a
cubic material, hAi � hBi � hCi and hDi � hEi � hFi
� 0, but an individual grain may deviate from these
conditions. Hence, even though the crystalline symmetry
may require that the mean of some of the parameters be
zero, there may be a distribution about zero for a sample
incorporating random strains.

For notational convenience, we relabel the para-
meters fA; . . . ;Fg as f�i: i � 1; . . . ; 6g. Assume for the
moment that the �i parameters have a Gaussian distri-
bution characterized by a covariance matrix
Cij � h��i ÿ haii���j ÿ h�ji�i, with Cii � �2��i�, the
variance of �i. Mhkl is linear in �i, and so from elemen-
tary statistics (see, e.g. Mendenhall et al., 1986), the
variance of Mhkl is given by

�2�Mhkl� �
P
i;j

Cij

@M

@�i

@M

@�j

: �2�

Note that @M=@�1 � h2, @M=@�6 � hk, etc. Therefore,
(2) can be rearranged as

�2�Mhkl� �
P

HKL

SHKLhHkKlL �3�

with terms SHKL de®ned for H � K � L � 4. In the
most general (triclinic) case, there are 15 such inde-
pendent parameters SHKL, as opposed to the 21 elements
of Cij. This is due to a geometric redundancy of the Cij in
(2). For example, it is meaningless to distinguish a
positive correlation of the magnitudes of the reciprocal
lattice parameters a� and b� (appearing as C12) from the
variance of the angle � between them (incorporated
into C66). Both produce contributions proportional to
h2k2 in (2), and so C12 and C66 are not independent,
whereas there is only one parameter in (3) proportional
to h2k2, namely S220.

Using the Bragg equation, sin � � �=�2d� � �M1=2=2,
the anisotropic broadening contribution to the FWHM
(in radians) of a diffraction line is given by

ÿA � ��2�Mhkl��1=2 tan �=Mhkl: �4�
[Here, the factor of �8 ln 2�1=2 between the r.m.s. and the
FWHM of a Gaussian has been incorporated into the
de®nition of SHKL.] A similar result for the peak width as
a function of �2�Mhkl� may be derived for time-of-¯ight
neutron diffraction.

Powder diffraction line shapes are generally not
Gaussian. One widely used line shape for Rietveld
analysis of diffraction pro®les consists of a convolution
of Gaussian and Lorentzian line shapes, commonly
known as the Voigt line shape. Taking the Gaussian and
Lorentzian line-shape functions with FWHM ÿ,
normalized to unit integrated intensity,

Gÿ�x� � ��4 ln 2=��1=2=ÿ� expÿ�4 ln 2x2=ÿ2�
Lÿ�x� � �ÿ=2��=��ÿ=2�2 � x2�;

the Voigt line shape of a peak centered at 2�0 is de®ned
as

VÿG;ÿL
�2� ÿ 2�0� �

R
d2�0GÿG

�2� ÿ 2�0�
� LÿL

�2�0 ÿ 2�0�:
Following Thompson, Cox & Hastings (1987), the
Gaussian and Lorentzian widths are often taken to
depend on the scattering angle 2� as

ÿG � �U tan2 � � V tan � �W�1=2 �5a�
and

ÿL � X tan � � Y= cos � �5b�
respectively, and the parameters U; . . . ;Y are adjusted
to give the best ®t to the line shape.

The generalization of equations (3) and (4) to incor-
porate a Lorentzian term in the line shape is dif®cult,
because the Lorentzian does not have a second moment,
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and thus the argument leading to (2) is not valid. In
particular, even though the convolution of two Lorent-
zians is a Lorentzian (of the sum of the original widths),
there is no generalization of a Lorentzian line shape to
higher dimensions such that any projection yields a
Lorentzian. Nevertheless, it is important to be able to
incorporate a Lorentzian line shape into this formalism;
consequently, we assume, without further mathematical
justi®cation, that equations (3) and (4) can be inter-
preted to give the FWHM of a Lorentzian anisotropic
broadening term. In order to have a method for inter-
polation between Gaussian and Lorentzian, we intro-
duce a parameter � and consider an anisotropically
broadened Voigt line shape, V�1ÿ��ÿA;�ÿA

�2� ÿ 2�0�, with
Gaussian and Lorentzian widths �1ÿ ��ÿA and �ÿA,
respectively. Note that the FWHM of this function
differs from ÿA if � differs from 0 or 1.

Making use of the familiar results for the convolution
of two Gaussian or two Lorentzian line shapes, the
widths are taken to be

ÿG � �U tan2 � � V tan � �W � �1ÿ ��2ÿ2
A�hkl��1=2

ÿL � X tan � � Y= cos � � �ÿA�hkl�:
�6�

Often, X and U are interpreted as incorporating strain
contributions, and so they may duplicate the action of
the SHKL parameters introduced here. In actual use, they
may be set by ®tting some reference standard. They also
allow the possibility of parameterizing different line
shapes for broad and sharp peaks, should such a case
arise. The shape of re¯ections for which ÿA�hkl� is small

will be governed by U; . . . ;W, whereas the shape of
peaks having a large ÿA�hkl� is controlled by �.

There are certain restrictions on the allowed aniso-
tropic broadening terms based on the crystal system. For
example, in a cubic crystal, re¯ections (hkl), (khl), (lhk),
( �hkl), etc. all coincide, and should therefore have the
same width. This leads to the restrictions on strain
parameters listed in Table 1. All of these restrictions are
fairly obvious by inspection, except perhaps for those of
the hexagonal system. In that case, re¯ections (hkl),
(hk�l), (h� k; �k; l), etc. are equivalent, implying that h
and k can enter only in the combination h2 � k2 � hk.
The only possible terms are therefore proportional to
�h2 � k2 � hk�2, �h2 � k2 � hk�l2, and l4.

The trigonal (rhombohedral) Bravais lattice is
generated by three primitive vectors of equal length,
separated by equal angles. However, the diffraction
patterns of trigonal crystals are frequently indexed by
hexagonal axes. The fact that rhombohedral reciprocal
lattices have four independent anisotropic strain
parameters while hexagonal diffraction patterns admit
only three may seem confusing. For example, in the
present formalism, the strain-broadened widths of
rhombohedral peaks in the four directions (100), (110),
(1�10) and (111) are linearly independent; these translate
into hexagonal indices (101), (012), (2�10) and (003), of
which only three can be adjusted independently. The
resolution is that when hexagonal indices are used for
the seven rhombohedral space groups R3, R�3, R32, R3m,
R�3m, R3c and R�3c, only peaks with ÿh� k� l
� 0 mod 3 are observed. The spurious sixfold axis can be
removed in these cases where it is desired to use hexa-
gonal indices by introducing a fourth strain parameter as

Table 1. Restrictions on anisotropic strain parameters for the seven crystal systems

Those SHKL not listed in the last column must be zero.

Crystal system Restrictions on metric parameters Anisotropic strain parameters

Cubic A � B � C, D � E � F � 0 S400 � S040 � S004; S220 � S202 � S022

Tetragonal A = B, D � E � F � 0 S400 � S040, S202 � S022, S004, S220

Orthorhombic D � E � F � 0 S400, S040, S004, S220, S202, S022

Monoclinic D � F � 0 S400, S301, S220, S202, S121, S103, S040, S022, S004

Trigonal (R3 etc.) A � B � C, D � E � F Rhombohedral indices:
S400 � S040 � S004, S220 � S202 � S022,
S211 � S121 � S112,
S310 � S130 � S301 � S103 � S031 � S013

Hexagonal indices:
S400 � S040 � S310=2 � S130=2 � S220=3,
S202 � S022 � S112, S004,
S301=2 � ÿS031=2 � S211=3 � ÿS121=3

Hexagonal, trigonal (P3 etc.) A � B � F, D � E � 0 S400 � S040 � S310=2 � S130=2 � S220=3,
S202 � S022 � S112, S004

Triclinic All 15 SHKL allowed
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a coef®cient to �3h3 ÿ 3k3 � �kÿ h�3�l, a combination of
indices which has �3 symmetry.

3. Examples

This section illustrates the formalism developed above
by application to two systems: monoclinic sodium p-
hydroxybenzoate (NaO2C7H4OH) and cubic Rb3C60.
The model of anisotropic broadening for Rietveld and
Le Bail ®tting of ®xed-wavelength data described above
has been realized in a program TPROFPV, adapted
from the program PROFPV, which was adapted by D. E.
Cox, B. H. Toby, P. Zolliker & J. A. Hriljac from the
original Rietveld (1969) program.

3.1. Sodium p-hydroxybenzoate

The crystal structure of NaO2C-C6H4-p-OH was
unknown before this work; a preliminary report has
been given by Dinnebier et al. (1995). However, due to
severe anisotropic broadening, conventional Rietveld
re®nements could not produce a suf®ciently low R factor
to give con®dence that the details of the structure were
correct. Indeed, the data set provided the main moti-
vation for the present work on anisotropic line-shape
broadening.

The synthesis and structure of this material will be
described in another publication. The air-sensitive
sample was sealed in a thin-walled glass capillary and a
diffraction data set was recorded at beamline X3B1 of
the National Synchrotron Light Source. X-rays of
wavelength 1.1475 AÊ were selected by a double-crystal
Si(111) monochromator, and the diffracted radiation
analyzed by a Ge(111) crystal before a scintillation
detector. X-ray counts were normalized to the signal
from an ionization chamber to correct for the decay of
current in the storage ring. The data were collected in
steps of 0.005� of 2� from 3 to 73�; the sample was
rocked several degrees at each point to improve the
averaging over grains. Fitted positions of 20 low-angle
peaks were used in the indexing program ITO (Visser,
1969) to obtain monoclinic lattice dimensions of
a = 16.04, b = 5.376, c = 3.633 AÊ , �= 92.87�, and the space
group P21 was assigned on the basis of systematic
absences and molecular volume.

The widths (from ®ts to pseudo-Voigt line shapes) of
peaks which could be unambiguously assigned are
plotted as circles in Fig. 1. All of these ®ts converge to a
pseudo-Voigt mixing parameter � in the neighborhood
of 0.6, with no obvious trend as a function of width. This
fact shows the importance of including both Lorentzian
and Gaussian contributions into any general model of
anisotropic broadening, as has been done in some (Cox,
1994; Fischer et al., 1995) but not all (RodrõÂguez-
Carvajal, 1997) previous work.

Inspecting the data of Fig. 1, one immediately sees
that the (h00) and (hk0) peaks are quite sharp, whereas

peaks with all indices nonzero are the broadest. Parti-
cularly noteworthy is the large discrepancy between the
widths of the (611) and (800) peaks, which are separated
by only 37� in the reciprocal lattice, but fall on the
broadest and the narrowest trend lines, respectively, of
width versus 2�. Any model of anisotropic broadening
based on parameterizing a smooth function of direction
within the reciprocal lattice will be hard pressed to
account for this observation. On the other hand, the
parameters SHKL de®ned in (3) naturally accommodate
the trends in different symmetry directions.

A rather large number of line-shape parameters are
required to accurately describe the data set in a Le Bail
®t (Le Bail et al., 1988) of the pro®le. Parameters U, V
and X in (6) were set to zero, and W and Y were set by
an extrapolation of the width and shape of the (h00)
series to 2�� 0. Initial estimates for most of the nine
anisotropic broadening parameters were established
from the results of individual line-shape ®ts. For
example, the parameter S400 is uniquely determined by
the width of peaks (h00), and once S400 and S040 have
been so ®xed, the parameter S220 can be derived from
the width of (hk0) peaks. Ultimately, the nine para-
meters SHKL appropriate to monoclinic symmetry, along
with �, W and Y [equation (6)], were re®ned in a Le Bail
®t to the entire pro®le. The resulting ®t gives a pro®le R
factor Rp � 5:93% and weighted Rwp � 8:22%, with
�2 � 7:31; these values can be compared to
Rp � 10:32%, Rwp � 15:47% and �2 � 26:2 for the best
Le Bail ®t with the SHKL all set to zero, and only the
conventional Rietveld parameters U, V, W, X and Y
re®ned. The parameters are given in Table 2, and the

Fig. 1. FWHM versus diffraction angle 2� for sodium p-hydroxy-
benzoate. Plotted are both the widths of pseudo-Voigt ®ts to
individual peaks and the widths in a Le Bail ®t of the entire pro®le,
with the line-shape parameters listed in Table 2.
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widths from this re®nement are plotted, for comparison
with the measured widths, in Fig. 1.

The measured and ®tted widths are also compared in
Fig. 2, which does not show the evolution of individual
families in certain directions as clearly as Fig. 1, but does
give a very encouraging indication of the agreement
between model and experimental results. A portion of
the Le Bail ®t is shown in Fig. 3, again demonstrating
excellent agreement between the experimental data and
the model presented in x2.

It is natural to ask whether all nine of the symmetry-
allowed anisotropic strain parameters are actually
needed to obtain an acceptable ®t to the line shape. This
question is addressed by ®ts with each in turn of the nine
allowed parameters SHKL, as well as the Lorentzian
mixing parameter �, set to zero. In each case, all of the
other parameters were adjusted for the best least-
squares ®t; the resulting values of Rwp are listed in Table
2. The results indicate that seven of the nine anisotropic

strain parameters have a signi®cant role in producing an
acceptable line-shape ®t, and that it is important to
include Lorentzian contributions to the anisotropic line
shape. It is likely that the relative unimportance of S121

and S103 represent details of the present sample rather
than a universal property of the model developed here.
One can also see that the SHKL parameters really act
independently by looking at the correlation matrix in
the least-squares re®nement. If any of the parameters
were redundant, they would show elements near unity.
In fact, the two largest correlations were 58%, between
S301 and S202, and 54%, between S022 and S004. This
implies that each parameter has an independent in¯u-
ence on the model.

It is not easy to visualize the form of ÿA�hkl� from
equations (3) and (4). Indeed, it is not immediately clear
whether this is a smooth function of the direction Q̂ of
the hkl re¯ection in reciprocal space, since it is de®ned
only on the reciprocal lattice. Because ÿA increases in
proportion to the diffraction order, it is sensible to
consider the scaled width, ÿA= tan �. Fig. 4 depicts three
sections of ÿA�Q̂�= tan � for the re¯ection list and Shkl

parameters of the present re®nement, which show that
the scaled width is a smooth function of direction in
reciprocal space, and also that the re®ned pattern of
widths is quite different from an ellipsoid in reciprocal
space.

3.2. Rb3C60

Anisotropic broadening of powder diffraction peaks
in the alkali fulleride superconductor Rb3C60 was ®rst
noted by Zhu et al. (1991). Cox (1994) had developed a
model of the anisotropic variation of line widths which
has a signi®cant effect on the quality of ®ts attainable,
and which allows the conclusion that the material is
actually non-stoichometric, with a few percent cation
vacancies (Fischer et al., 1995; Bendele et al., 1998). His

Fig. 2. Comparison of FWHM from the Le Bail ®t to individual peak
®ts, for the same data shown in Fig. 1.

Table 2. Re®ned values of anisotropic strain parameters
for sodium p-hydroxybenzoate

The last column shows the Rietveld Rwp with the relevant parameter
set to zero; for comparison, the best ®t with all parameters re®ned has
Rwp � 8:22%.

Parameter Value

Rwp (%) when
parameter set
to zero

S400 �1:90� 0:05� � 10ÿ11 8.63
S301 �2:8� 0:1� � 10ÿ9 8.63
S220 �1:9� 0:5� � 10ÿ9 8.61
S202 �5:61� 0:06� � 10ÿ8 12.95
S121 �0� 1� � 10ÿ8 8.22
S103 �1:1� 0:1� � 10ÿ8 8.23
S040 �2:2� 0:1� � 10ÿ9 8.39
S022 �8:3� 0:2� � 10ÿ8 8.74
S004 �1:25� 0:01� � 10ÿ7 10.5
� 0.404 � 0.005 10.81

Fig. 3. Part of the Le Bail ®t to the diffraction pro®le of sodium p-
hydroxybenzoate.
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approach is to multiply the width from the Thompson±
Cox±Hastings line-shape model [parameters U, V, W, X
and Y in (5)] by a function of the direction of the Bragg
peak in reciprocal space, g�Q̂�, and to parameterize that
function through symmetry-adapted spherical harmo-
nics. In this section, we compare the results of that
approach with the present method, using an Rb3C60 data
set that has been discussed in previous work (Fischer et
al., 1995).

The Rb3C60 sample was prepared by vapor transport
in a sealed capillary, and measured on beamline X3B1 of
the National Synchrotron Light Source with a double-
crystal Si(111) monochromator and Ge(111) analyzer at
an X-ray wavelength of � = 1.14964 AÊ . The sample has a
lattice parameter of 14.431 AÊ . The widths of peaks
which are fully resolved in the powder diffraction
pattern are plotted in Fig. 5, from which it can be seen
that peaks in the (100) direction are approximately twice
as broad as those along (111). The inset to Fig. 5 shows a
limited range of the data, encompassing the (311) and
(222) peaks, with widths in the ratio of 1.7 : 1. A Le Bail
®t to the entire spectrum (5±66�) without anisotropic
broadening gives Rwp � 9:1% (�2 � 7:02).

For the case of cubic symmetry, the Cartesian
coordinates of g�Q̂� are (h0; k0; l0), with h0 �
h�h2 � k2 � l2�ÿ1=2, etc. g�h0; k0; l0� is expanded as a
series,

g�h0; k0; l0� � 1� C4K4 � C6K6 � � � �
with

K4�h0; k0; l0� � 5�h04 � k04 � l04�=2ÿ 3=2

etc. [Higher terms in the series have been given by
JaÈrvinen et al. (1970).] A Le Bail ®t gives a weighted
Rwp � 3:42% (�2 � 2:15) with the anisotropic width
parameters {Cj} listed in Table 3.

Within the present model for strain broadening in a
cubic system, there are only two independent para-
meters, S400 and S220. As for the case of sodium p-
hydroxybenzoate discussed above, the strain-dependent
parameters appearing in the Voigt-adapted Rietveld
formalism, U, V and X, were set to zero. It was found
that the parameters W and Y, which give the size
contribution (broadening of low-angle peaks),
converged to values which were essentially zero, and so
they were left out of the ®nal re®nement. The Le Bail ®t
converges to the parameters listed in Table 3, with
Rwp � 3:45%, �2 � 2:19. There is no signi®cant differ-
ence between line-shape ®ts with the spherical harmonic
model (with nine adjustable line-shape parameters) and
the present work (with three). Clearly, this model
condenses the necessary ¯exibility into fewer param-
eters than the spherical harmonic approximation, at
least for this particular example. It is tempting to suggest
that this is due to the validity of the underlying physical
model, a point which is discussed below.

Fig. 5. Diffraction peak width versus diffraction angle for the peaks
which can be resolved and indexed unambiguously from a powder
pattern of f.c.c. Rb3C60. The inset at the top shows a limited range of
the data, ®tted by a model with two different peak widths (upper
trace) and with the widths constrained to be equal (lower trace).
Reprinted from J. Phys. Chem. Solids (1995), 56, 1445±1457, with
permission from Elsevier Science.

Fig. 4. Reduced anisotropic width (ÿA= tan �) for three sections
through the reciprocal space of monoclinic sodium p-hydroxy-
benzoate.
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4. Comparison with other work

The present idea of anisotropic broadening through
correlations of metric parameters was initially described
by two other groups. The ®rst work was by Thompson,
Reilly & Hastings (1987), speci®cally for the case of
hexagonal La5Ni, in which a large lattice strain was
introduced by loading and removing interstitial
hydrogen. While their basic principle was along the lines
described here, their expression for the line width was
not compatible with hexagonal symmetry, in the sense
that re¯ections (h; k; l), (ÿk; h� k; l) etc. do not have
the same width. They obtained satisfactory results,
presumably because the re¯ection list used in their
re®nement was sorted into a particular order, e.g. h � k
� 0 and l � 0. Nevertheless, we cannot regard their
formulation as generally applicable.

The other previous formulation of this model was
outlined for tetragonal La2NiO4 by RodrõÂguez-Carvajal
et al. (1991), and made publicly available in the program
FULLPROF (RodrõÂguez-Carvajal, 1997). In that
program, the anisotropic broadening line shape is
restricted to a Gaussian form; as we have seen (Table 2),
this can produce a serious degradation of the quality of
line-shape ®t obtainable. More seriously, not all of the
parameters (®fteen for triclinic, nine for monoclinic,
etc.) are available. [There are minor notational differ-
ences in that the FULLPROF treatment uses the stan-
dard deviation and correlation parameters �i � C

1=2
ii and

Cij=��i�j�. Also, for anisotropic strain broadening in the
monoclinic system, FULLPROF takes c as the twofold
axis, but the results are here translated to the b setting
for comparison with the present work.] For monoclinic
symmetry, FULLPROF treats the two parameters C13

and C55 as separately re®nable, although they both
appear in the term of (3) proportional to h2l2 and
therefore have identical actions on the widths of powder

peaks. Furthermore, correlations between metric
parameters A and E and between C and E are neglected,
so that parameters S301 and S103 do not appear. Another
shortcoming of the treatment in FULLPROF is that it is
not able to handle cubic systems [equation (8)].
However, it is worth noting that the FULLPROF
treatment does agree with the present work on the
parameters required and available for tetragonal,
orthorhombic and hexagonal systems.

Popa (1998) has presented a mathematical treatment
of strain broadening which is essentially identical to the
present work, with two important differences. He
assumes that the strain broadening affects only the
Gaussian component of a Voigt lineshape; as discussed
above, the strain broadening in real samples contains a
Lorentzian component which is crucial for obtaining a
useful ®t, even though mathematical dif®culties arise in
justifying it. Furthermore, Popa's treatment is more
general, as it applies only the Laue symmetry instead of
degeneracy in the powder pattern in considering
symmetry restrictions. For example, in tetragonal crys-
tals with 4=m Laue symmetry, re¯ections hkl and khl are
not equivalent even though they overlap in a powder
pattern. Popa's treatment (translated into the present
notation) allows such peaks to have different width, by
including a term S310�h3kÿ hk3�. The trigonal Laue
group 3 presents another example, with (hexagonal)
re¯ections �h; k; l� and �h� k; k; l� constrained to equal
widths in the present work, but distinguishable in Popa's
model. Clearly, a Le Bail ®t (without structural infor-
mation) will be unstable if it re®nes parameters which
control the widths of peaks which have the same posi-
tion in a powder pattern, and so the present formalism
should be used in such a case. However, if a structural
model is known which distinguishes powder-degenerate
peaks by their intensity, it may be useful to separately
re®ne their widths as described by Popa.

5. Discussion

The present approach has been termed phenomen-
ological because it relates a microscopic explanation for
lattice strains to the observed diffraction pro®les, even
though it cannot predict the actual values of the strain
parameters. It is of interest to compare this with a model
of anisotropic strain broadening in cubic crystals by
Stokes & Wilson (1944). They assumed that a sample of
cold-worked metal was characterized by a random but
isotropic distribution of stress, so that the sample strain
might vary as a function of direction due to the aniso-
tropy of the elasticity. On these very general grounds,
they predicted that the width of each re¯ection should
be given by

ÿ �
�

A� B
h2k2 � k2l2 � h2l2

�h2 � k2 � l2�2
�1=2

tan � �7�

Table 3. Comparison of parameters for line-shape ®ts of
cubic Rb3C60

Comparison is for ®ts according to Cox's (1994) spherical harmonic
expansion and the model described in the present work. In each case,
besides those listed, four other parameters were re®ned: lattice
parameter, zero-shift, low-angle peak-asymmetry parameter and
background normalization.

Spherical harmonic expansion Present work

U = 1.2166 U � V � W � X � Y � 0
V � ÿ0:3915
W = 0.0222
X = 0.823
Y = 0.0054
C4 = 0.418 S400 � S040 � S004 � 3:43� 10ÿ8

C6 � ÿ0:0328 S220 � S202 � S022 � ÿ1:13� 10ÿ8

C8 � ÿ0:0574 � = 0.558
C10 � ÿ0:0057
Rwp � 3:42% Rwp � 3:45%
�2 � 2:15 �2 � 2:19
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where A and B depend only on the elastic constants and
the mean-square stresses of the sample. Within the
present model, cubic systems are characterized by two
independent strain parameters, S400 and S220, so that the
anisotropic contribution to the line width is

ÿ2��hkl�

� �S400�h4 � k4 � l4� � S220�h2k2 � k2l2 � h2l2��1=2

�h2 � k2 � l2�=a2
0

� tan �

�
�

S400 � �S220 ÿ 2S400�
h2k2 � k2l2 � h2l2

�h2 � k2 � l2�2
�1=2

� tan �a2
0

�8�
where a0 is the cubic lattice parameter. It is immediately
seen that these expressions are identical, differing only
in the de®nitions of their phenomenological parameters.

Micro-strain in a powder sample may originate from a
distribution of dislocations within the individual grains.
The fundamental approach would be to work out the
elastic ®eld of a particular type of defect, to calculate the
diffraction line shape for each re¯ection (hkl), and then
perform a suitable average over orientations. This
program is forbiddingly complicated for any but the
simplest materials; it has been carried out for hexagonal-
close-packed (h.c.p.) (Klimanek & Kuzel, 1989) and
face-centred-cubic (f.c.c.) (UngaÂr & BorbeÂ ly, 1996)
metals. In both cases, the in¯uence of a particular defect
on a particular re¯ection is governed by a contrast factor
�C, which can be evaluated (with considerable effort)
from elasticity theory (Groma et al., 1988). UngaÂr &
BorbeÂ ly (1996) measured the widths of six powder peaks
in a cold-worked sample of copper powder. Their data of
width versus diffraction angle look very similar to the
®rst six points in Fig. 5. They found that the introduction
of the contrast factor �C into the abscissa of a modi®ed
Williamson±Hall plot gave perfect agreement with their
data. Indeed, their tabulated contrast factor is linear in
the combination of Miller indices which arises in this
work; in particular, it is given (within one part in 104) by

�C � 0:3040ÿ 0:6141
h2k2 � k2l2 � h2l2

�h2 � k2 � l2�2 : �9�

More recently, motivated by the present work, UngaÂr
& Tichy (1999) have shown that the contrast factor
generated by any type of dislocation in a cubic material
must have this dependence on the Miller indices.

In summary, this paper has presented a technique for
handling anisotropic strain broadening in powder
diffraction patterns which is based on a reasonable
physical assumption and which provides a very good
match to the data for the two examples given. Further-
more, in the case of cubic systems, it makes contact with
the results of a microscopic treatment. In future work, it

will be important to determine whether this method is
universally applicable, and whether its premises can be
derived with greater rigor from the physics of micro-
strain.

APPENDIX A

Since the original submission of this manuscript, the
present formulation of anisotropic strain broadening has
been adapted into the widely-used GSAS package
(Larson & Von Dreele, 1994). Some of the parameters
have been rede®ned to integrate smoothly into the
GSAS code, and so a summary of the differences
between notation used in GSAS and the present work is
given here for the convenience of users.

(1) The scale of the parameters Shkl is de®ned to give
them numerical values closer to unity, by de®ning the
anisotropic strain as �d=d = ���2�Mhkl��1=2=�18000Mhkl�:
For ®xed wavelength experiments, this leads to an
angular width in 2� equal to �360�=����d=d� tan �.

(2) GSAS treats �d=d as the variance of a Gaussian
lineshape, but the half-width at half-maximum of a
Lorentzian. This produces small numerical differences
in the ®tting parameters, but is of no signi®cance in the
quality of the ®t.

(3) The number of different covariance matrix
elements Cij contributing to each SHKL is included
explicitly, so that equation (3) becomes

�2�Mhkl� � S400h4 � S040k4 � S004l4 � 3�S220h2k2

� S202h2l2 � S022k2l2� � 2�S310h3k� S103hl3

� S031k3l � S130hk3 � S301h3l � S013kl3�
� 3�S211h2kl � S121hk2l � S112hkl2�:

I have pro®ted in many ways from useful discussions
with David Cox. I am also grateful to G. M. Bendele, R.
E. Dinnebier, J. E. Fischer, M. Pink and J. Sieler for
contributions to the data collection and analysis. R. E.
Dinnebier, J. I. Langford, A. Le Bail, R. Von Dreele, and
an anonymous referee have made useful suggestions
about this presentation. This work has been partially
supported by the National Science Foundation grant No.
DMR95-01325. The SUNY X3 beamline at the National
Synchrotron Light Source is supported by the Division
of Basic Energy Sciences of the US Department of
Energy (DE-FG02-86ER-45231). Research was carried
out at the National Synchrotron Light Source at
Brookhaven National Laboratory, which is supported by
the US Department of Energy, Division of Materials
Sciences and Division of Chemical Sciences.
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