EP7_15C.RTF

Seventh European Powder Diffraction Conference (EPDIC-7), Barcelona, Spain, 20-23 May 2000

Oral contribution OC57: 13:00, 23 May 2000 (revised 16 June 2000 by the author for posting on the CCP14 website)

Progress in Automatic Powder Indexing

Robin Shirley, School of Human Sciences, University of Surrey, UK

Introduction

In this talk we’ll be looking at:

What powder indexing is and why it’s necessary;

Parameter space vs index space;

Why indexing is difficult, including the character of its solution space;

A survey of methods and programs, including more recent approaches;

The Crysfire suite: indexing for non-specialists;

Some current issues and opportunities;

And finally, a live Crysfire demonstration.

Before proceeding to these points, let me begin by saying that success in powder indexing, perhaps more than in any other aspect of powder diffraction, depends critically on the resolution and accuracy of one’s observed data. [This note was added in response to a comment by the session chairman, Jan Visser, but it is in any case one to which I most strongly subscribe.]

What is Powder Indexing?

It’s the process of inductive reasoning from internal regularities within the set of observed d* values, by which their indices can be inferred and the three-dimensional reciprocal lattice reconstructed, yielding the previously unknown unit cell parameters.

Why is Indexing Necessary?

Indexing is increasingly required for both scientific and industrial work:

1) Structure analysis from powders -
Modern methods for structure solution and Rietveld refinement allow ab initio structures to be solved from powder data for most solid phases of moderate size and complexity, but only if the unit cell is known. Indexing is increasingly the limiting step in this process.

2) Pharmaceutical polymorphs -
Polymorphs of the same compound often differ in pharmaceutically important properties like solubility and bioavailability. Guiding a new drug through regulatory processes and preparing patents needs a thorough characterisation of its polymorphs. Indexing thus takes on commercial significance, since it’s much easier to defend patents on a particular polymorph if one can show unambiguously that it’s a single solid phase.

3) Standard patterns for phase identification

One can only be sure such patterns represent single solid phases if they’ve been fully indexed.

Parameter Space vs Index Space

The process of generating a powder pattern from a set of cell constants has 6 degrees of freedom: the 3 sides and 3 angles of the general unit cell, or their 6 equivalents in reciprocal space, or, more usefully, the 6 powder constants QA to QF that give the linear relation as shown.

From these equations, indices can be assigned if the cell is known, or the cell calculated if the indices are known. Inferring the indices is equivalent to determining the cell parameters, so that indexing can be done either in a 6-dimensional parameter space or an equivalent 3N-dimensional integer-valued index space.

Why is Powder Indexing Difficult?

Since structure analysis involves many unknown parameters, while a unit cell only contains 6, why isn’t this a trivial problem?

Well, 6 parameters are already enough to place exhaustive, brute-force methods out of reach, at least in the general triclinic case, since they’d take years of computer time. And there are deeper reasons.

1) Degrees of freedom for indexing (based on my poster at the BCA2000 meeting, Edinburgh, April 2000)

Indexing an unknown powder pattern looks like the logical inverse of generating the pattern, but it isn’t. Powder indexing isn’t reversible, and it’s inductive rather than deductive. Pattern generation has at most 6 degrees of freedom – fewer in high symmetry, but this doesn’t hold for indexing.

Thus to generate a cubic pattern needs only one constant – the cell side a. If this were reversible, an unknown cubic cell could be found from a single powder line, which is plainly absurd, since its indices wouldn’t be known. Even in high symmetry there are still 6 metrical degrees of freedom – to call a pattern orthorhombic is just shorthand for saying 3 of its constants are now known.

The cell sides might need doubling or more, requiring a further 3 order-fixing degrees of freedom. And there may be an instrumental degree of freedom due to uncertainties in specimen displacement, and hence in the effective zero of 2(.

Thus strictly the indexing process has at least 9 and often 10 degrees of freedom, while, as we’ll see, there may be only some 20-30 useful observed lines, so it’s not as over-determined as we’d like.

2) Line overlap

As d* increases, the number of reciprocal lattice points increases as its cube. This quickly overwhelms even synchrotron resolution, giving overlaps that increase rapidly with 2(. Modern pattern-decomposition methods help, but resolved peaks remain more reliable than those extracted from multiple overlaps.

3) Index indeterminacy at higher angles

Calculated Qhkl values depend on the second power of their indices, becoming increasingly sensitive with 2(to small cell changes. This helps cell refinement, but not indexing, since the match of each obs line to the nearest calc line becomes unstable. So as 2(rises, assigned indices are increasingly likely to be wrong, even if the cell is roughly correct, which for least-squares purposes is worse than not using those lines at all.

Lines beyond the first 20 or 30 contribute little indexing information, because they place few constraints on possible cells. That’s why one can’t power through the degrees of freedom problem simply by measuring more lines.

4) Solution space problems

Lastly, it turns out that the relevant solution space is often hostile and resists global optimisation, especially in low symmetry.

The Character of Indexing’s Solution Space -

By plotting figure-of-merit against lattice parameters for an observed pattern, we can explore its solution hyperspace, as shown in the diagram.

[image: image1.png]
Fig 1.
M1 surface in the QD/QE (i.e. (*/(*) section for (-Cu phthalocyanine (from Powder47)
The map shows the localised, spiky and irregular nature of maxima in indexing’s solution space. This is unhelpful for most global optimisation methods, which for good performance need to:

(a) converge on a maximum from a distance;

(b) separate out weakly coupled parameters (genetic-algorithm “schemata”) and optimise them individually – in the above map the correct QE only gives a high figure of merit when paired with the correct QD.

[image: image2.png]
Fig 2.
WM3 contour plot near the origin of the QD/QE section for (-Cu phthalocyanine
Another issue – pseudo-symmetry - is raised in this contour plot, from an enlarged region of the sharpened merit surface, near the origin of the section we’ve just seen.

(-Cu phthalocyanine is triclinic but strongly pseudo-monoclinic, so that the large peak shown in red is very close to, but not on, the QD axis (i.e. (* is almost 90º), while (* (not shown here) is exactly 90º within experimental error. This sort of thing can be confusing for programs that impose assumptions about metrical symmetry (and for humans too).

A Survey of Methods and Programs

Rather than review these individually, I’ve prepared comparative tables, starting by classifying the methods, including two global optimisations – simulated annealing and the diffusion equation - that to my knowledge haven’t yet been tried. The diffusion equation should suit these spiky solution spaces.

Method
Space
Exhaustive
Status
Program(s) available

Zone indexing
Parameter
No
Mature
Yes (2)

Successive dichotomy
Parameter
Yes
Mature
Yes (1+)

Grid search
Parameter
Yes
Semi-mature
Yes (1)

Combined heuristic
Parameter
Semi
Mature
Yes (2)

Genetic algorithms
Parameter
No
Developing
Yes (1)

Simulated annealing
Parameter
No
Not yet tried
No

Diffusion equation
Parameter
No
Not yet tried
No

Scan/covariance
Par. (both)
To monocl.
Developing
Yes (1)

Index heuristics
Index
No
Mature
Yes (2)

Index permutation
Index
Yes
Mature
Yes (1)

(The list is not claimed to be complete. Only symmetry-general methods are included)
The list is arranged first by search space, then from established methods to newer ones. Eight out of ten work primarily in parameter-space.

Then there’s their search strategy. Exhaustive methods can be used to rule out crystal systems and screen for high-symmetry solutions, but get increasingly time-consuming in low symmetry. About half the methods contain some exhaustive element and 2 are capable of being fully exhaustive.

The last columns give an idea how mature the programs are for each method, and how many are available.

The next table identifies the programs. They’re underlined if within Crysfire, and in round brackets if not generally available. You can see there’s a much wider choice than the classic trio of ITO, DICVOL and TREOR: 13 are listed, of which 11 are currently available and 8 supported by Crysfire.

Space
Method
Programs using this method

Parameter
Zone indexing
ITO12, FJZN6

Successive dichotomy
DICVOL91, [in part: LZON, LOSH]

Grid search
SCANIX, (Powder49)

Combined heuristic
LZON, LOSH

Genetic algorithms
AUTOX, (W.P.G.A.: Belmonte et al)

Simulated annealing
(not yet implemented)

Diffusion equation
(not yet implemented)

Par. (both*)
Scan/covariance
EFLECH/INDEX

Index
Index heuristics
TREOR90, TMO [=KOHL]

Index permutation
POWDER [=TAUP]

(Underlined if supported by Crysfire, in round brackets if not generally available)

* EFLECH/INDEX operates in parameter space down to monoclinic, then switches to index space for triclinic.

Moving to specific programs, this summary table includes authors and operating system environments – mostly DOS, which is still good for small, numerically intensive programs, though I expect there are more 32-bit Windows and Linux versions out there than I’ve shown.

Program
Author(s)
Method
Space
Exhaustive
O/S

ITO12
Visser
Zone index.
Par
No
DOS +?

FJZN6
Visser & Shirley
Zone index.
Par
No
DOS

DICVOL91
Louër & Boultif
Dichotomy
Par
Mainly*
DOS +?

SCANIX
Paszkowicz
Grid search
Par
Yes
DOS/ANSI

(Powder49)
Shirley
Grid search
Par
Semi
Mainframe

LZON
Shirley/Louër/Visser
Comb. heur.
Par
Semi
DOS

LOSH
Shirley & Louër
Comb. heur.
Par
Semi
DOS

AUTOX
Zlokazov
Genetic alg.
Par
No
DOS/extender

(W.P.G.A.)
Harris**
Genetic alg.
Par
No
Unix

EFLECH/INDEX
Bergmann
Scan/covar.
P/(I)*
Mainly*
DOS,Win,Linux

TREOR90
Werner
Index heur.
Ind
No
DOS +?

TMO [=KOHL]
Kohlbeck
Index heur.
Ind
No
DOS +?

POWDER [=TAUP]
Taupin
Index perm.
Ind
Yes
DOS +?

* EFLECH/INDEX operates in parameter space down to monoclinic, then switches to index space for triclinic. Like DICVOL91, it is exhaustive only down to monoclinic.

** Ken Harris told me at the meeting that he is now the primary contact for the genetic algorithm indexing program reported by Kariuki et al (1999), J. Synchr. Rad., 6, 87-92. As its name had not yet been finalised, I have listed it here as W.P.G.A. (for Whole-Profile Genetic Algorithm program).
Next their typical run times in the three commonest crystal systems, and how far they operate automatically - only completely so for 7, all of which are within Crysfire. For 5 of these, run times are broadly independent of symmetry, but of course not for the two using primarily exhaustive strategies.

Program
Orthor.
Monocl.
Tricl.
Comments

ITO12
2 sec
2 sec
2 sec
Automatic

FJZN6
3 sec
3 sec
3 sec
Automatic

DICVOL91
<5 sec
2-30 min
mins-hours*
Automatic, very volume-dependent

SCANIX
c.30 min
(?10 min)
n.a.
User guided in monoclinic

(Powder49)
c.15 min in each case

(PC Equivalent times) User guided

LZON
5-15 min in each case

Automatic

LOSH
<1 min
<1 min
<1 min
User guided

AUTOX
?1 min
?10 min
?1 hour
Semi-automatic in practice?

(W.P.G.A.)
Run times said to be lengthy
(Alpha / SGI workstation)

EFLECH/INDEX
15 min
1 hour
15 min
c.Automatic, exhaustive to monoclinic

TREOR90
<1 min
<1 min
<1 min
Automatic

TMO [=KOHL]
<1 min
<1 min
<1 min
Automatic

POWDER [=TAUP]
<20 sec
1 hour+
Very long
Automatic

(Typical run times are offered here as a rough guide, but may vary considerably with data & settings)
* Additional notes:

Daniel Louër has queried the correctness of the triclinic run time of “hours+” for DICVOL91 in my original table. He said that students in his laboratory (using very high quality triclinic data) usually only require a few minutes. In his opinion any triclinic search taking over 15 minutes is having problems and should be aborted.

This raises an important issue concerning how DICVOL91 has been optimised, particularly in low symmetry. It is excellent for general use down to orthorhombic and for relatively low-volume monoclinic cells. However, at higher volumes in monoclinic, and especially in triclinic, it seems to me that DICVOL91 has been optimised more for guidance by experienced users than for automatic use by non-specialists. The run-time entries in the table above are intended as a guide for general users, not for experienced users who may well be able to take short cuts, and they also assume good-quality laboratory datasets that are more typical than the very high quality ones measured in Daniel’s laboratory.

In response to Daniel’s comments, I have carried out a test run with DICVOL91 using a difficult triclinic Guinier-camera dataset showing some line broadening, approaching this as far as possible like a non-specialist user carrying out an ab initio search. Using 0.06° 2Theta limits (realistic in this case), DICVOL91 completed a search down to triclinic for volumes up to 2000A3 in 7.5 hours, but did not find a convincing solution, although a 347A3 cell with M20=24.8 existed within its search space and was found by LZON in 2.5 minutes. The best DICVOL91 solution was a monoclinic cell with volume 684A3 (1.97V), so that it might have been a monoclinic approximation to a 2V derivative cell. Reducing the 2Theta limits to the default of 0.03° shortened the run time to 14 minutes, without finding either the 347A3 triclinic cell or the previous 684A3 monoclinic cell.

This brings out several points: (1) that DICVOL run times are very sensitive to the 2Theta limits, so that it performs much better with very accurate data (and without impurity lines, which are not permitted); (2) that its searches are only exhaustive down to monoclinic, so that it may well miss solutions lying within its search path in triclinic; (3) that for triclinic datasets it is worth trying other programs such as ITO, TREOR, KOHL, FJZN6 and LZON before attempting a triclinic run with DICVOL.

Daniel also warns of the danger of launching DICVOL runs with relatively large 2Theta limits (such as 0.06°), since DICVOL is then more likely to halt after finding a false solution in a lower volume shell, and so not continuing and finding the correct cell in a subsequent shell (this didn’t happen in my test, but easily could have). In such cases, an experienced user knows to restart the run from the next volume shell in order to check for the existence of further possible solutions, but such considerations may not occur to a non-specialist.
Finally an attempt to capture their particular strengths and weaknesses – a kind of consumer guide. Note how the different programs complement each other.

Tolerates

Tolerates:
Random

Program
Impurities
Errors
Comments

ITO12
Yes
No
Optimised for low-symmetry

FJZN6
Yes
No
As for ITO12, but more robust

DICVOL91
No
Slows
For screening to orthor./monocl., no impurities

SCANIX
Yes
Slows?
Under development, user guided

(Powder49)
Slows
Maybe
(Superseded by LZON)

LZON
Slows
Slows
Best for dominant-zone cases

LOSH
Slows
Slows
User-guided, faster than LZON

AUTOX
?Slows
?Slows
Many optional user settings

(W.P.G.A.)
Yes
Slows
Uses whole profile, under development

EFLECH/INDEX
Yes
Slows
Uses full peak-fit covariance matrix

TREOR90
Yes
No
Specialises in very accurate impure data

TMO [=KOHL]
Yes
Yes
Fast, useful for high & low symmetry

POWDER [=TAUP]
Slows
?Slows
For screening down to orthorhombic

(Though nominally automatic, in practice AUTOX often needs some user guidance)
Some unfamiliar ones come out well here. For example, I’d single out FJZN6 as a more robust alternative to standard ITO, and LZON as strongest at handling pathological, multi-solution cases. And also KOHL’s rare combination of speed and tolerance of both impurities and random errors, though not pathological cases. All three deserve wider use.

Indexing for Non-Specialists: the Crysfire Suite (Shirley)

Crysfire simplifies indexing for non-specialists by offering a unified semi-automatic environment from which indexing programs can be called and their results evaluated.

Modified versions of eight indexing programs (ITO12, FJZN6, DICVOL91, TREOR90, POWDER [TAUP], TMO [KOHL], LZON and LOSH) are incorporated, under the overall control of CRYS, a data-handling front-end and indexing wizard.

The results from each indexing program are displayed, and one-line summaries of its solutions are added to an overall summary file and presented in descending order of plausibility, as we shall see in a minute.

Crysfire is distributed free for non-commercial use from the CCP14 website (www.ccp14.ac.uk).

Some Current Issues and Opportunities

1) Incorporation of instrument parameters

Uncertainties over the effective specimen position are common, even for synchrotron data. At low angles this mainly shows as a zero error, so can be corrected by self-calibration (Shirley, 1980; PowderX: Dong, 1999), either as a fixed 2(zero term, or more exactly as one varying with cos (, though the difference is small at low angles. It could also provide a heuristic for distinguishing correct zones, since these should have the same correction term.

2) Incomplete-solution criteria

Figures of merit like M20 and FN rely on the solution being complete and accounting for all observed lines. Often this is enforced by excluding “unindexed” lines – observed lines that fail to agree closely enough with calculation (thus modifying the data to fit the model, not a prudent practice).

The Ishida & Watanabe PM figure of merit doesn’t assume a complete model, allowing solutions to be developed and tested incrementally, and one phase indexed in the presence of others.

3) Sparse datasets (High-P/High-T)

There’s a growing need to index datasets with fewer observed lines than usual, due to unavoidable experimental restrictions, but this needs to be reconciled with the degrees-of-freedom arguments raised earlier.

4) Scale independence – can one index a protein pattern?

Formally the indexing problem is scale independent – it uses only relative dimensions and doesn’t care if everything gets 10 times bigger. This has been verified experimentally. But it’s well known that in practice large cells make indexing harder. Although indexing is scale independent, instrument resolution and accuracy are not, so if the d-spacings are 10 times bigger, the data must be 10 times better. And yes, Bob von Dreele has indexed some protein patterns, at least in high symmetry - Crysfire now includes scale-shifting to support this.

5) Co-operation between programs

Indexing-related software tends no longer to operate in isolation, but to co-operate with other programs. Thus the Laugier & Bochu CHEKCELL program can browse the list of trial solutions in a Crysfire summary file and assign probable spacegroups.

Crysfire demonstration

Now for a live demonstration of indexing the easy way, using Crysfire – it should take under 2 minutes (time me).

[This showed an ab initio indexing run launched from within Crysfire using KOHL on a Y2(oxalate)3.2H2O test dataset. A 648.7A3 C-centred monoclinic cell with M20=113 was found in 8 seconds, with the whole demonstration completed within 1 min 45 sec.]

Conclusions
The powder-indexing problem is now well understood, though not always solved. Powerful programs are available and becoming more widely used. However, in view of its growing importance, much remains to be done - to make these tools more accessible and better integrated, to address difficult problems of mixed phases and sparse data, and to explore some of the new approaches that I’ve mentioned.

8

