GRAPH SOFTWARE FOR SCIENTISTS & ENGINEERS Graph Paper | |

This page describes creating blank graph paper with DPlot. The examples shown below all assume standard 8.5 x 11 inch paper,
though other paper sizes are of course possible. If you'd like to skip over the details of how these paper examples were created,
click any of the "example" links below. All examples are in the form of Adobe PDF files and will be opened in a separate window.
To view these files you need Adobe® Acrobat or Adobe® Acrobat Reader.
Acrobat Reader is a free product that you can get from
the Adobe download site.
Each of the examples below are created in the same way: with a DPlot macro. The macros are a matter of convenience and repeatability only; the same steps taken by each macro may be performed with normal menu commands. Each example follows the same sequence of commands: - Open a new document window (
*FileNew*command). - Set the printer margins (
*FilePageSetup*command). There are a couple of important points here: a) DPlot will always scale down a graph (if necessary) to fit within the margins, and the margins will always be at least the minimum margins for the printer regardless of what you set them to. Minimum margins vary from printer to printer. To find the minimum margins for your printer, select the*Page Setup*command on the*File*menu. Enter 0 for each margin value; the*Page Setup*procedure will override that value as you <tab> away from each margin text box. b) DPlot will always center a graph within the specified margins. If you want precise placement of a graph on the printed page**and**the graph has no numbers, always use the*Size*command to specify the size of the box surrounding the graph, and set the printer margins such that the margin values plus the graph width/height are equal to the paper width/height. - Set the colors used for grid lines and the outer boundary of the paper (
*Color*and*AxisColor*commands). Many of these examples use a light color that will appear washed out on your display, but look good on a printed page. - Add one or two data points to establish the extents of the graph (
*XYXY*command). This "curve" will subsequently be hidden. - Set the scale type (linear, logarithmic, polar, etc.) (
*Scale*command). - Set the major and minor grid line intervals (
*TickInterval*or*NumTicks*command). - Force the extents of the graph (
*ManualScale*command). - Set the physical size of the box surrounding the graph (
*Size*command). - Set the number formats used for the X and Y axes (
*NumberFormat*command). Many of these examples set the format to "None", such that numbers will not be drawn. - Set the line weights (
*LineWidth*command).**Note:**In each of the examples below you may not see a difference in line weights between the major and minor grid lines on your display unless you have a very high resolution monitor or you zoom in using your PDF viewer. When printed, however, the difference should be apparent if printed at 300 dpi or higher. - Hide the data points entered with
*XYXY*(*HideCurve*command).
To create a macro, select the Macro command on the File menu. Enter a name for the macro that you'll create that you will remember next week. Then click the "Edit/Create" button. Select the text below with your mouse for the graph paper type you'd like to create, right-click and select Copy. In the Macro Editor, click the Paste button. For help with a specific macro command, click on the command such that the text insertion point is on the same line as the command, then click the Help button within the Macro Editor. If you want to assign a shortcut key to the macro, select one of the key combinations in the "Shortcut" list. Then click the "Save" button to save the macro. To now run the macro and create your graph paper, if you used a shortcut key you can simply press that key combination. Otherwise, select the Macro command from the File menu, select your macro from the list, and click "Run" ## Engineer paperThis paper is typically used by engineers and engineering students. It has a 7 inch wide by 10 inch tall grid, with major grid lines spaced at one inch and 5 subdivisions every inch.FileNew() FilePageSetup(0.4,0.6,1.0,0.5) ' top, bottom, left, right margins in inches Color(0,204,255,204) ' Grid line color (very faint green) AxisColor(204,255,204) ' Color of the box surrounding the graph XYXY(2,0,0,7,10) ' Two data points, one at either extreme of the ' graph. TickInterval(1,1,1) ' Major grid lines at 1 unit in both directions DenseGridLines(5,5) ' Each grid division has 5 subdivisions ManualScale(0,0,7,10) ' Force the extents of the graph Size(1,7,10,0) ' ...as well as the physical size: 7"w x 10"h NumberFormat(0,12) ' No numbers for either axis NumberFormat(1,12) LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,10) ' ...as is the surrounding box LineWidth(-3,5) ' Minor grid lines are 0.005 inches wide HideCurve(1) ' Don't show the "curve" Result: Engineer Paper. ## Blue-lined 1/4" gridA 8 inch wide by 10 inch high grid with major grid lines at 1 inch intervals and minor grid lines every 1/4 inch.FileNew() FilePageSetup(0.4,0.6,0.25,0.25) ' top, bottom, left, right margins in inches Color(0,204,255,255) ' Grid line color (very faint cyan) AxisColor(204,255,255) ' Color of the box surrounding the graph XYXY(2,0,0,8,10) ' Two data points, one at either extreme of the ' graph. TickInterval(1,1,1) ' Major grid lines at 1 unit in both directions DenseGridLines(4,4) ' Each grid division has 4 subdivisions ManualScale(0,0,8,10) ' Force the extents of the graph Size(1,8,10,0) ' ...as well as the physical size: 8"w x 10"h NumberFormat(0,12) ' No numbers for either axis NumberFormat(1,12) LineWidth(0,20) ' Major grid lines are 0.02 inches wide LineWidth(-1,20) ' ...as is the surrounding box LineWidth(-3,10) ' Minor grid lines are 0.01 inches wide HideCurve(1) ' Don't show the "curve" Result: Blue-lined 1/4" grid. Want more minor grid lines? With DenseGridLines(10,10) you get
this paper, with minor grid lines spaced at 0.1 inches. ## Log-log, 4 cycles x 4 cyclesFileNew() FilePageSetup(1,3.5,1,1) ' top, bottom, left, right margins in inches Color(0,128,192,128) ' Grid line color AxisColor(128,192,128) ' Color of the box surrounding the graph XYXY(2,1,1,10000,10000) ' Two data points, one at either extreme of the ' graph. Scale(4) ' Log x, Log y DenseGridLines(2,2) ' Any value greater than 1 results in minor grid lines ' at 1.1,1.2,...,4.8,4.9,5.2,5.4,...,9.6,9.8 ' times a power of 10. With these values set to 1, ' minor grid lines are only drawn at integer values times ' a power of 10. Size(1,6.5,6.5,0) ' Physical size: 6.5"w x 6.5"h NumberFormat(0,12) ' No numbers for either axis NumberFormat(1,12) LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,10) ' ...as is the surrounding box LineWidth(-3,5) ' Minor grid lines are 0.005 inches wide HideCurve(1) ' Don't show the "curve" Result: Log-Log 4 cycle. ## Semi-log, 10 major divisions on X, 3 log cycles on YFileNew() FilePageSetup(1,3.5,1,1) ' top, bottom, left, right margins in inches Color(0,128,192,128) ' Grid line color AxisColor(128,192,128) ' Color of the box surrounding the graph XYXY(2,0,1,10,1000) ' Data points at (0,1) and (10,1000) Scale(2) ' Linear x, log y TickInterval(1,1) ' Major grid lines at 1 unit in X direction DenseGridLines(5,2) ' 5 subdivisions in X direction. For log scales, ' ' Any value greater than 1 results in minor ' grid lines at 1.1,1.2,...,4.8,4.9,5.2,5.4,...,9.6,9.8 ' times a power of 10. With this value set to 1, ' minor grid lines are only drawn at integer values ' times a power of 10. Size(1,6.5,6.5,0) ' Physical size: 6.5"w x 6.5"h NumberFormat(0,12) ' No numbers for either axis NumberFormat(1,12) LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,10) ' ...as is the surrounding box LineWidth(-3,5) ' Minor grid lines are 0.005 inches wide HideCurve(1) ' Don't show the "curve" Result: Semi-log paper. ## Polar plotFileNew() FilePageSetup(0,0,0,0) ' Full page (minus minimum margins) is usable. ' ' Graph will be centered. Color(0,128,192,128) ' Grid line color (light green) AxisColor(128,192,128) ' Color of the outermost circle XYXY(1,0,0) ' A single data point at 0,0 Scale(8) ' Polar plot NumTicks(1,12) ' 12 major grid lines, 360/12=30 degrees DenseGridLines(6,1) ' Minor grid lines at 5 degrees ManualScale(,0,,10) ' Force the extents of the graph (10 units) Size(1,6,6,0) ' 6"w x 6"h (polar plots don't necessarily ' have to be circular; this one will be. NumberFormat(0,8) ' Use PI fractions for the angle values NumberFormat(1,12) ' and no numbers for the amplitude FontPoints(1,12) ' Numbers use 12 pt font LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,10) ' ...as is the outermost circle LineWidth(-3,5) ' Minor grid lines are 0.005 inches wide HideCurve(1) ' Don't show the "curve" PolarPlotStyle(0x1020) ' 0 degrees is labelled (normally it isn't) ' and axial grid lines start at the first ' radial line (default=center) Result: Polar plot paper. ## Grain size distributionA grain size distribution plot is a special purpose graph generally used to depict the results of a sieve analysis, commonly known as a "gradation test". For more information see the Grain Size Distribution page.FileNew() FilePageSetup(0,0,0,0) ' Use entire page (within allowable margins for ' the printer). Graph will be centered on the page. Color(0,204,204,204) ' Grid line color (very faint gray) AxisColor(0,0,0) ' Color of the box surrounding the graph (black) XYXY(2,0.001,1,1000,99) ' Two data points, one at either extreme of the ' graph. Scale(7) ' Grain size distribution plot TickInterval(1,,10) ' Major grid lines at 10 units in Y direction DenseGridLines(1,1) ' No minor grid lines ManualScale(1000,0,0.001,100) ' Force the extents of the graph Size(1,6,6,0) ' ...as well as the physical size: 7"w x 10"h FontPoints(1,10) ' Numbers along the axes are 10pt NumberFormat(0,0) ' Default number format NumberFormat(1,0) LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,10) ' ...as is the surrounding box LineWidth(-3,5) ' Minor grid lines are 0.005 inches wide HideCurve(1) ' Don't show the "curve" GrainSizeFlags(0) ' Use default grain size options. To see ' available options (specify sieve sizes, ' British sieve sizes, Udden-Wentworth scale, ' and others, within the macro editor place ' the cursor on the GrainSizeFlags line and ' click the Help button. Result: Grain size distribution paper. With GrainSizeFlags(0xE0000000) (Udden-Wentworth scale, British
sieve sizes, and X increasing from left to right), you get this paper
instead. ## Tripartite paperA tripartite plot (also known as "four coordinate paper") consists of a logarithmic scale on both the X and Y axes and two additional logarithmic scales that are derived from the X and Y axes by some fixed relationship. For more information see the Tripartite Plot page.FileNew() FilePageSetup(0.5,0.5,0.5,0.5) ' top, bottom, left, right margins in inches Color(0,204,204,204) ' Grid line color AxisColor(0,0,0) ' Color of the box surrounding the graph XYXY(2,0.1,0.01,100,10) ' From frequency=1-100Hz, Velocity=0.01-10 inches/sec Scale(5) ' Tripartite grid, assuming x=Hz, y=velocity in ' inches/sec, with 45 degree lines = displacement in ' inches and 135 degree lines = acceleration in g's ' Other units: ' 0x0105 Hz, feet/sec, feet, and g's ' 0x0205 Hz, mm/sec, millimeters, and g's ' 0x0305 Hz, cm/sec, centimeters, and g's ' 0x0405 Hz, meters/sec, meters, and g's ' 0x0505 Period (seconds), inches/sec, inches, and g's ' 0x0605 Period (seconds), feet/sec, feet, and g's ' 0x0705 Period (seconds), mm/sec, mm, and g's ' 0x0805 Period (seconds), cm/sec, cm, and g's ' 0x0905 Period (seconds), meters/sec, meters, and g's DenseGridLines(2,2) ' Any value greater than 1 results in minor grid lines ' at 1.1,1.2,...,4.8,4.9,5.2,5.4,...,9.6,9.8 ' times a power of 10. With these values set to 1, ' minor grid lines are only drawn at integer values ' times a power of 10. Size(1,6.5,6.5,0) ' Physical size: 6.5"w x 6.5"h LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,10) ' ...as is the surrounding box LineWidth(-3,5) ' Minor grid lines are 0.005 inches wide FontPoints(1,10) ' Numbers are 10pt HideCurve(1) ' Don't show the "curve" TripartiteFlags(0x0001) ' Draw intermediate acc. and disp. lines Result: Tripartite paper. ## Triangle plotA triangle plot (also known as a ternary plot), is a graph of 3 variables. It is most often used in geologic studies to show the relative compositions of soils and rocks, but it can be more generally applied to any system of three variables. For more information see the Triangle Plot page.FileNew() FilePageSetup(0,0,0,0) ' Full page (minus minimum margins) is usable. ' ' Graph will be centered. Color(0,192,192,192) ' Grid line color AxisColor(0,0,0) ' Color of the axes XYXY(1,0,0) ' A single data point at 0,0 Scale(14) ' Triangle plot TickInterval(1,10) ' Grid lines at 10,20,30,...,80,90 Size(1,7,7,0) ' 6"w x 6"h LineWidth(0,10) ' Major grid lines are 0.01 inches wide LineWidth(-1,20) ' Axes are 0.02 inches wide HideCurve(1) ' Don't show the "curve" XAxisLabel("Sand") YAxisLabel("Clay") ZAxisLabel("Silt") FontPoints(1,12) ' Numbers use 12 pt font FontPoints(4,14) ' X axis FontPoints(5,14) ' Y axis FontPoints(7,10) ' USDA labels FontPoints(8,14) ' Z axis TriangleFlags(1) ' USDA soil classification lines Result: Triangle plot. | |

Copyright © 2001-2006 by HydeSoft Computing, LLC Privacy Policy |